18.已知O為坐標原點,F(xiàn)1、F2分別是雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的左右焦點,A為C的左頂點,P為C上一點,且PF1⊥x軸,過點A的直線l與線段PF1交于點M,與y軸交于點E,若直線F2M與y軸交點為N,OE=2ON,則C的離心率為(  )
A.$\frac{1}{3}$B.2C.$\frac{2}{3}$D.$\frac{3}{4}$

分析 根據(jù)條件求出直線AE的方程,求出N,E的坐標,利用|OE|=2|ON|的關系建立方程進行求解即可.

解答 解:∵PF1⊥x軸,∴設M(-c,t),
則A(-a,0),B(a,0),
AE的斜率k=$\frac{t}{a-c}$,則AE的方程為y=$\frac{t}{a-c}$(x+a),
令x=0,則y=$\frac{ta}{a-c}$,即E(0,$\frac{ta}{a-c}$),
∵N(0,$\frac{t}{2}$),
∵|OE|=2|ON|,
∴2|$\frac{t}{2}$|=|$\frac{ta}{a-c}$|,
即c=2a,
則離心率e=$\frac{c}{a}$=2,
故選:B

點評 本題主要考查雙曲線離心率的計算,根據(jù)條件求出直線方程和點N,E的坐標是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

8.已知定義在(0,+∞)的函數(shù)f(x)=|4x(1-x)|,若關于x的方程f2(x)+(t-3)f(x)+t-2=0有且只有3個不同的實數(shù)根,則實數(shù)t的取值集合是{2,$5-2\sqrt{2}$}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.函數(shù)y=|log3x|的圖象與直線l1:y=m從左至右分別交于點A,B,與直線${l_2}:y=\frac{8}{2m+1}(m>0)$從左至右分別交于點C,D.記線段AC和BD在x軸上的投影長度分別為a,b,則$\frac{a}$的最小值為(  )
A.$81\sqrt{3}$B.$27\sqrt{3}$C.$9\sqrt{3}$D.$3\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.若sinα=$\frac{4}{5}$,且α是第二象限的角,則tanα+cotα=-$\frac{25}{12}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.在《九章算術》中有一個古典名題“兩鼠穿墻”問題:今有垣厚五尺,兩鼠對穿,大鼠日一尺,小鼠也日一尺.大鼠日自倍,小鼠日自半,問何日相逢?大意是有厚墻五尺,兩只老鼠從墻的兩邊分別打洞穿墻.大老鼠第一天進一尺,以后每天加倍;小老鼠第一天也進一尺,以后每天減半,問幾天后兩鼠相遇?( 。
A.2$\frac{2}{17}$B.2$\frac{3}{17}$C.2$\frac{5}{17}$D.2.25

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知P1(2,-1),P2(0,5)且點P在P1P2的延長線上,$|{\overrightarrow{{P_1}P}}|=2|{\overrightarrow{P{P_2}}}|$,則點P的坐標為(-2,11).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.如圖所示,y=f(x)是可導函數(shù),直線l:y=kx+3是曲線y=f(x)在x=1處的切線,若h(x)=xf(x),則h(x)在x=1處的切線方程為x-y+1=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.設集合A={x∈R|x-1>0},B={x∈R|x<0},C={x∈R|x(x-1)>0},則“x∈A∪B“是“x∈C“的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.設函數(shù)f(x)=$\left\{\begin{array}{l}{{e}^{x},x≥0}\\{{x}^{2},x<0}\end{array}\right.$,若方程f(f(x))=a(a>0)恰有兩個不相等的實根x1,x2,則e${\;}^{{x}_{1}}$•e${\;}^{{x}_{2}}$的最大值為( 。
A.$\frac{1}{{e}^{2}}$B.2(ln2-1)C.$\frac{4}{{e}^{2}}$D.ln2-1

查看答案和解析>>

同步練習冊答案