19.為了得到函數(shù)y=sin(2x-$\frac{π}{3}$)的圖象,只需把函數(shù)y=sin2x的圖象( 。
A.向左平移$\frac{π}{3}$個(gè)單位長度B.向右平移$\frac{π}{3}$個(gè)單位長度
C.向左平移$\frac{π}{6}$個(gè)單位長度D.向右平移$\frac{π}{6}$個(gè)單位長度

分析 利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,得出結(jié)論.

解答 解:把函數(shù)y=sin2x的圖象向右平移$\frac{π}{6}$個(gè)單位長度,可得到函數(shù)y=sin(2x-$\frac{π}{3}$)的圖象,
故選:D.

點(diǎn)評(píng) 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知某廠生產(chǎn)的電子產(chǎn)品的使用壽命X(單位:小時(shí))服從正態(tài)分布N(1000,σ2),且P(X<800)=0.1,P(X≥1300)=0.02.
(1)現(xiàn)從該廠隨機(jī)抽取一件產(chǎn)品,求其使用壽命在[1200,1300)的概率;
(2)現(xiàn)從該廠隨機(jī)抽取三件產(chǎn)品,記抽到的三件產(chǎn)品使用壽命在[800,1200)的件數(shù)為Y,求Y的分布列和數(shù)學(xué)期望E(Y).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.某高中學(xué)校為了解中學(xué)生的身高情況,從該校同年齡段的所有學(xué)生中隨機(jī)抽取50名學(xué)生測(cè)量身高,由測(cè)量得到頻率分布表和頻率分布直方圖(部分)如下:
身高[145,155)[155,165)[165,175)[175,185)[185,195]
頻數(shù)3m19n4
(1)求m,n并在該題答題紙區(qū)域內(nèi)補(bǔ)全頻率分布直方圖;
(2)請(qǐng)用這50名學(xué)生的身高數(shù)據(jù)來估計(jì)該校這個(gè)年齡段的學(xué)生身高平均數(shù)是多少?(同一組中的數(shù)據(jù)用該組的中點(diǎn)值作代表);
(3)從[145,155)和[185,195]這兩組中任意取出兩名學(xué)生,求這兩名學(xué)生身高差距超過10cm的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.三個(gè)女生和五個(gè)男生排成一排.
(1)如果女生必須全排在一起,可有多少種不同的排法?
(2)如果女生必須全分開,可有多少種不同的排法?
(3)如果兩端都不能排女生,可有多少種不同的排法?(結(jié)果用數(shù)字表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知f(x)=xlnx,
(Ⅰ)求f(x)的值域;
(Ⅱ)若x>1時(shí),f(x)<a(x2-1),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.5張卡片上分別標(biāo)有號(hào)碼1,2,3,4,5,現(xiàn)從中任取3張,則3張卡片中最大號(hào)碼為4的概率是( 。
A.$\frac{1}{5}$B.$\frac{3}{10}$C.$\frac{3}{5}$D.$\frac{1}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在等差數(shù)列{an}中,若a4+a6+a10+a12=240,則2a10-a12=60.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x-3,x≤0}\\{-2+lnx,x>0}\end{array}\right.$的零點(diǎn)個(gè)數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知矩陣$A[{\begin{array}{l}1&0\\ 0&2\end{array}}],B=[{\begin{array}{l}1&{\frac{1}{2}}\\ 0&1\end{array}}]$,則AB的逆矩陣(AB)-1=$[\begin{array}{l}{1}&{-1}\\{0}&{\frac{1}{2}}\end{array}]$.

查看答案和解析>>

同步練習(xí)冊(cè)答案