5.在△ABC中,sinA=sinB是A=B的( 。
A.必要非充分條件B.充分非必要條件
C.充要條件D.既不充分也不必要條件

分析 因?yàn)槭窃凇鰽BC中,所以由sinA=sinB得到A=B,所以得到a=b;而由a=b能得到A=B,所以得到sinA=sinB,所以sinA=sinB是a=b的充要條件.

解答 解:在△ABC中,由sinA=sinB,可得到A=B,∴a=b;
∴sinA=sinB是a=b的充分條件;
由a=b,得到A=B,∴sinA=sinB;
∴sinA=sinB是a=b的必要條件;
∴sinA=sinB是a=b的充要條件.
故選:C.

點(diǎn)評(píng) 考查充分條件、必要條件、充要條件的概念,及三角形邊角的關(guān)系:如果A=B,則a=b,如果a=b,則A=B,以及sinA=sinB時(shí),A與B的關(guān)系.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.函數(shù)$f(x)=sin(x+\frac{π}{4})cos(x+\frac{π}{4})+{cos^2}x-{log_2}|x|-\frac{1}{2}$的零點(diǎn)個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.如果直線y=2x-1和y=kx互相垂直,則實(shí)數(shù)k的值為( 。
A.2B.$\frac{1}{2}$C.-2D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.函數(shù)$y=2sin({\frac{π}{3}-x})cos({\frac{π}{6}+x})$(x∈R)的最小值為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若α為第二象限角,則$\frac{{{{[{sin({180°-α})+cos({α-360°})}]}^2}}}{{tan({180°+α})}}$=$\frac{cosα(1+2sinαcosα)}{sinα}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若$sinx=-\frac{1}{4}$,$x∈({π\(zhòng);,\;\;\frac{3π}{2}})$,則( 。
A.$x=arcsin({-\frac{1}{4}})$B.$x=-arcsin\frac{1}{4}$C.$x=π+arcsin\frac{1}{4}$D.$x=π-arcsin\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.函數(shù)$y=\frac{sinx-1}{sinx+2}$的值域是[-2,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知定義在R上的函數(shù)f(x)滿足$f(x)=\left\{\begin{array}{l}cosx\;,\;\;sinx≤cosx\\ sinx\;,\;\;sinx>cosx\end{array}\right.$,給出以下結(jié)論:
①f(x)是周期函數(shù);
②f(x)的最小值為-1;
③當(dāng)且僅當(dāng)x=2kπ,k∈Z時(shí),f(x)取得最小值;
④當(dāng)且僅當(dāng)$2kπ-\frac{π}{2}<x<({2k+1})π$,k∈Z時(shí),f(x)>0;
⑤f(x)的圖象上相鄰兩個(gè)最低點(diǎn)的距離是2π,
其中正確的結(jié)論序號(hào)是①④⑤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.函數(shù)$f(x)={log_{\frac{1}{2}}}({{x^2}-2x+1})$的單調(diào)遞增區(qū)間是(-∞,1).

查看答案和解析>>

同步練習(xí)冊答案