20.已知直線a,b分別在兩個(gè)不同的平面α,β內(nèi).則“直線a和直線b沒有公共點(diǎn)”是“平面α和平面β平行”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

分析 根據(jù)空間面面平行的定義和性質(zhì)以及充分條件和必要條件的定義進(jìn)行判斷即可.

解答 解:若平面α和平面β平行,則直線a和直線b沒有公共點(diǎn)成立,即必要性成立,
若直線a和直線b沒有公共點(diǎn),則平面α和平面β平行或平面α和平面β相交,則充分性不成立,
故“直線a和直線b沒有公共點(diǎn)”是“平面α和平面β平行”的必要不充分條件,
故選:B

點(diǎn)評(píng) 本題主要考查充分條件和必要條件的判斷,根據(jù)空間平面和直線的位置關(guān)系是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知一個(gè)半球內(nèi)有一個(gè)內(nèi)接直三棱柱ABC-A1B1C1,底面ABC在半球的大圓面上,AA1=4,BC=4$\sqrt{3}$,∠BAC=120°,則半球的表面積為( 。
A.64πB.72πC.80πD.96π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若圓錐的底面半徑長(zhǎng)為4,高為6,在這個(gè)圓錐內(nèi)有一個(gè)內(nèi)接圓柱,設(shè)這個(gè)圓柱的高為x,則當(dāng)x取何值時(shí),圓柱的側(cè)面積最大( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù) f(x)=sinx(cosx-$\sqrt{3}$sinx).
(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)求函數(shù)f(x)在[0,$\frac{π}{2}$]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若ξ~B(n,p)且E(ξ)=$\frac{4}{3}$,D(ξ)=$\frac{8}{9}$,則P(ξ=1)的值為$\frac{32}{81}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=1+\sqrt{3}cosφ}\\{y=\sqrt{3}sinφ}\end{array}\right.$(φ是參數(shù),0≤φ≤π),以O(shè)為極點(diǎn),以x軸的正半軸為極軸,建立極坐標(biāo)系.
(Ⅰ)求曲線C的極坐標(biāo)方程;
(Ⅱ)直線l1的極坐標(biāo)方程是2ρsin($θ+\frac{π}{3}$)$+3\sqrt{3}=0$,直線l2:$θ=\frac{π}{3}$(ρ∈R)與曲線C的交點(diǎn)為P,與直線l1的交點(diǎn)為Q,求線段PQ的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知定義在R上的函數(shù)f(x),若對(duì)任意兩個(gè)不相等的實(shí)數(shù)x1,x2,都有x1f(x1)+x2f(x2)<x1f(x2)+x2f(x1),則稱函數(shù)f(x)為“D函數(shù)”.給出以下四個(gè)函數(shù):①f(x)=ex+x;②f(x)=-x3-2x;③f(x)=e-x;④f(x)=$\left\{\begin{array}{l}{ln|x|,x≠0}\\{0,x=0}\end{array}\right.$,其中“D函數(shù)”的序號(hào)為( 。
A.①②B.①③C.②③D.②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.出下列命題:
①命題“?x∈R,使得x2-2x+1<0”的否定是真命題;
②x≤1且y≤1是“x+y≤2”的充要條件;
③已知f'(x)是f(x)的導(dǎo)函數(shù),若?x∈R,f'(x)≥0,則f'(1)<f(2)一定成立;
④已知a,b都是正數(shù),且$\frac{a+1}{b+1}$>$\frac{a}$,則a<b;
⑤若實(shí)數(shù)x,y∈[-1,1],則滿足x2+y2≥1的概率為1-$\frac{π}{4}$,
其中正確的命題的序號(hào)是( 。ò涯阏J(rèn)為正確的序號(hào)都填上)
A.①③⑤B.①④⑤C.②⑤D.①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,asinB=$\sqrt{2}$sinC,sinC=$\frac{2\sqrt{2}}{3}$,△ABC的面積為4,則c=6.

查看答案和解析>>

同步練習(xí)冊(cè)答案