分析 (1)由圖1及對稱性知,CF=CB=Lcosθ,F(xiàn)E=BE=Lsinθ,又∠FEA=∠FCB=2θ,
得AE=FEcos2θ=Lsinθcos2θ,由AE+BE=Lsinθcos2θ+Lsinθ=1得,
L=$\frac{1}{sinθ+sinθcos2θ}$,利用導數(shù)求解
(2)當著痕GH經(jīng)過AD,BC中點時,B與C重合,當矩形ABCD為正方形時,點B與A重合時,折痕剛好為對角線,AD≥BC
解答 解:(1)由圖1及對稱性知,
CF=CB=Lcosθ,F(xiàn)E=BE=Lsinθ,
又∠FEA=∠FCB=2θ,
∴AE=FEcos2θ=Lsinθcos2θ,
由AE+BE=Lsinθcos2θ+Lsinθ=1得,
L=$\frac{1}{sinθ+sinθcos2θ}$,
即L關于θ的函數(shù)關系式
L=$\frac{1}{sinθ+sinθcos2θ}$,
θ∈(0,$\frac{π}{2}$),
L′=$\frac{2cosθ(2si{n}^{2}θ-co{s}^{2}θ)}{4si{n}^{2}θco{s}^{4}θ}$=0,
可得tanθ=$\frac{\sqrt{2}}{2}$,
即有arctan$\frac{\sqrt{2}}{2}$<θ<$\frac{π}{2}$,L′>0,函數(shù)L遞增;
0<θ<arctan$\frac{\sqrt{2}}{2}$,L′<0,函數(shù)L遞減.
可得L=$\frac{1}{\frac{\sqrt{3}}{3}+\frac{\sqrt{3}}{3}×(1-2×\frac{1}{3})}$=$\frac{3\sqrt{3}}{4}$,
此時L取得最小值為$\frac{3\sqrt{3}}{4}$;
(2)如下圖,當著痕GH經(jīng)過AD,BC中點時,B與C重合,
當矩形ABCD為正方形時,點B與A重合時,折痕剛好為對角線,
AD≥BC,∴AD的范圍是[1,+∞)
點評 本題考查了矩形的對折問題、直角三角形的邊角關系、倍角公式、三角函數(shù)的單調性、利用導數(shù)研究函數(shù)的單調性極值與最值,考查了推理能力與計算能力,屬于難題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 經(jīng)過定點P0(x0,y0)的直線都可以用方程y-y0=k(x-x0)表示 | |
B. | 經(jīng)過任意兩個不同點P1(x1,y1)、P2(x2,y2)的直線都可以用方程$\frac{(y-{y}_{1})}{({y}_{2}-{y}_{1})}$=$\frac{(x-{x}_{1})}{({x}_{2}-{x}_{1})}$表示 | |
C. | 不經(jīng)過原點的直線都可以用方程$\frac{x}{a}+\frac{y}$=1表示 | |
D. | 斜率存在且不為0,過點(n,0)的直線都可以用方程x=ny+n表示. |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $-\frac{1}{2}$ | D. | $-\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com