分析 (1)利用已知條件,利用正弦定理轉(zhuǎn)化求解即可.
(2)化簡表達(dá)式,通過余弦定理求解即可.
解答 解:(1)由正弦定理可知:$\frac{a}{sinA}=\frac{sinB}$,可得2sinAsinB=$\sqrt{3}sinB$,
∵sinB≠0,∴sinA=$\frac{\sqrt{3}}{2}$,
因?yàn)槿切问卿J角三角形,可得A=$\frac{π}{3}$.
(2)a2=(b-c)2+6,
可得a2=b2+c2+6-2bc,
又A=$\frac{π}{3}$,余弦定理可得:a2=b2+c2-bc,
解得bc=6,∴S=$\frac{1}{2}$bcsinA=$\frac{1}{2}×6×\frac{\sqrt{3}}{2}$=$\frac{3\sqrt{3}}{2}$.
點(diǎn)評(píng) 本題考查余弦定理以及正弦定理的應(yīng)用,三角形的面積的求法,考查計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{20\sqrt{5}}}{3}π$ | B. | $\frac{{64\sqrt{2}}}{3}π$ | C. | 20π | D. | 32π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {3} | B. | {3,4} | C. | {1,3,4} | D. | {0,1,2,3,4} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 240種 | B. | 480種 | C. | 640種 | D. | 1280種 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{13}}{13}$ | B. | $\frac{\sqrt{13}}{26}$ | C. | $\frac{\sqrt{13}}{52}$ | D. | $\frac{\sqrt{26}}{52}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -4 | B. | 4 | C. | $\frac{1}{4}$ | D. | $\frac{1}{9}{log_3}2$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com