分析 由題意可得函數(shù)f(x)的圖象關(guān)于直線x=2對(duì)稱,且f(x)在(2,+∞)上單調(diào)遞減,由此可得結(jié)論.
解答 解:定義在R上的函數(shù)y=f(x)在(-∞,2)上是增函數(shù),且函數(shù)y=f(x+2)為偶函數(shù),
故函數(shù)f(x)的圖象關(guān)于直線x=2對(duì)稱,且f(x)在(2,+∞)上單調(diào)遞減.
由|4-2|=2,|-1-2|=3,|5$\frac{1}{2}$-2|=$\frac{7}{2}$,∴f(4)>f(-1)>f(5$\frac{1}{2}$),
故答案為:f(4)>f(-1)>f(5$\frac{1}{2}$).
點(diǎn)評(píng) 本題主要考查函數(shù)的奇偶性、單調(diào)性,函數(shù)圖象的對(duì)稱性,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $[{-\frac{1}{2},1})$ | B. | $({-\frac{1}{2},1}]$ | C. | $({-\frac{1}{2},1})$ | D. | $[{-\frac{1}{2},1}]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 垂直 | B. | 平行 | C. | 相交但不垂直 | D. | 重合 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 逆命題 | B. | 否命題 | C. | 逆否命題 | D. | 否定 | ||||
E. | 逆命題 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | $\frac{9}{4}$ | D. | $\frac{9}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 向右平移$\frac{π}{6}$個(gè)單位長(zhǎng)度 | B. | 向右平移$\frac{π}{12}$個(gè)單位長(zhǎng)度 | ||
C. | 向左平移$\frac{π}{6}$個(gè)單位長(zhǎng)度 | D. | 向左平移$\frac{π}{12}$個(gè)單位長(zhǎng)度 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 向左平移$\frac{π}{6}$ | B. | 向左平移$\frac{π}{12}$ | C. | 向右平移$\frac{π}{6}$ | D. | 向右平移$\frac{π}{12}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com