14.已知兩個(gè)具有線(xiàn)性相關(guān)關(guān)系的變量的一組數(shù)據(jù)(x1,y1),(x2,y2),…,(xn,yn),由這些數(shù)據(jù)得到的回歸直線(xiàn)l的方程為$\widehat{y}$=$\widehatx+\widehat{a}$,若$\overline{x}$=$\frac{1}{n}\sum_{i=1}^{n}{x}_{i}$,$\overline{y}$=$\frac{1}{n}\sum_{i=1}^{n}{y}_{i}$,則下列各點(diǎn)中一定在l上的是(  )
A.($\overline{x}$,$\overline{y}$)B.($\overline{x}$,0)C.(0,$\overline{y}$)D.(0,0)

分析 根據(jù)線(xiàn)性回歸方程過(guò)樣本中心點(diǎn),即可得出答案.

解答 解:根據(jù)題意,回歸直線(xiàn)l的方程$\widehat{y}$=$\widehatx+\widehat{a}$過(guò)樣本中心點(diǎn)($\overline{x}$,$\overline{y}$).
故選:A.

點(diǎn)評(píng) 本題考查了線(xiàn)性回歸直線(xiàn)過(guò)樣本中心點(diǎn)的應(yīng)用問(wèn)題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知數(shù)列{an}滿(mǎn)足:${a_1}=2,{a_2}=\frac{2}{3},{a_n}=\frac{{2{a_{n-1}}{a_{n+1}}}}{{{a_{n-1}}+{a_{n+1}}}}\;(n∈{N^*},n≥2)$.
(1)求證:數(shù)列$\{\;\frac{1}{a_n}\;\}$為等差數(shù)列;
(2)求數(shù)列$\{\;\frac{a_n}{2n+1}\;\}$的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.求直線(xiàn)l:3x-y-6=0被圓C:(x-1)2+(y-2)2=5截得的弦AB的長(zhǎng)為  ( 。
A.2B.$4\sqrt{2}$C.$\sqrt{10}$D.$2\sqrt{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.我國(guó)魏晉時(shí)期的數(shù)學(xué)家劉徽在《九章算術(shù)注》中首創(chuàng)割圓術(shù):“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓合體,而無(wú)所失矣”,即通過(guò)圓內(nèi)接正多邊形割圓,通過(guò)逐步增加正多邊形的邊數(shù)而使正多邊形的周長(zhǎng)無(wú)限接近圓的周長(zhǎng),進(jìn)而來(lái)求得較為精確的圓周率,如圖是利用劉徽的“割圓術(shù)”思想設(shè)計(jì)的一個(gè)程序框圖,其中n表示圓內(nèi)接正多邊形的邊數(shù),執(zhí)行此算法輸出的圓周率的近似值依次為(數(shù)據(jù)sin15°≈0.2588,sin10°≈0.1736,sin7.50≈0.1306)( 。
A.3,3.1248,3.1320B.3,3.1056,3.1248C.3,3.1056,3.1320D.3,3.1,3.140

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.$\int{\begin{array}{l}1\\ 0\end{array}}({e^x}+2x)$=e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知數(shù)列{an}的首項(xiàng)a1=t,其前n項(xiàng)和為Sn,且滿(mǎn)足Sn+Sn+1=n2+2n,若對(duì)?n∈N*,an<an+1恒成立,則實(shí)數(shù)t的取值范圍是($\frac{1}{4}$,$\frac{3}{4}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間有關(guān)系,某農(nóng)科所對(duì)此關(guān)系進(jìn)行了調(diào)查分析,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:
日期12月1日12月2日12月3日12月4日12月5日
溫差x/℃101113128
發(fā)芽數(shù)y/顆2325302616
該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線(xiàn)性回歸方程,再對(duì)被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(Ⅰ)求選取的2組數(shù)據(jù)恰好是相鄰2天數(shù)據(jù)的概率;
(Ⅱ)若選取的是12月1日與12月5日的兩組數(shù)據(jù),請(qǐng)根據(jù)12月2日至12月4日的數(shù)據(jù),求出y關(guān)于x的線(xiàn)性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$;
(Ⅲ)若由線(xiàn)性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差不超過(guò)2顆,則認(rèn)為得到的線(xiàn)性回歸方程是可靠的,試問(wèn)(2)中所得的線(xiàn)性回歸方程是否可靠?
(參考公式:$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.在平面直角坐標(biāo)系xOy中,圓:x2+y2=4,直線(xiàn)l:4x+3y-20=0.A($\frac{4}{5}$,$\frac{3}{5}$)為圓O內(nèi)一點(diǎn),弦MN過(guò)點(diǎn)A,過(guò)點(diǎn)O作MN的垂線(xiàn)交l于點(diǎn)P.
(1)若MN∥l.
       ①求直線(xiàn)MN的方程;
       ②求△PMN的面積.
(2)判斷直線(xiàn)PM與圓O的位置關(guān)系,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知某地區(qū)中小學(xué)生人數(shù)和近視情況分別如圖1和圖2所示,為了解該地區(qū)中小學(xué)生的近視形成原因,用分層抽樣的方法抽取4%的學(xué)生進(jìn)行調(diào)查,則樣本容量和抽取的高中生近視人數(shù)分別為( 。
A.200,20B.400,40C.200,40D.400,20

查看答案和解析>>

同步練習(xí)冊(cè)答案