分析 設(shè)直角三角形的邊長為a,a+1,a2+(a+1)2=25,a>0.解出利用倍角公式即可得出.
解答 解:設(shè)直角三角形的邊長為a,a+1,
則a2+(a+1)2=25,a>0.
解得a=3.
∴sinθ=$\frac{3}{5}$,cosθ=$\frac{4}{5}$.
∴$sin({θ+\frac{π}{3}})$=$\frac{\sqrt{3}}{2}×\frac{3}{5}+\frac{1}{2}×\frac{4}{5}$=$\frac{{4+3\sqrt{3}}}{10}$.
故答案為$\frac{{4+3\sqrt{3}}}{10}$.
點評 本題考查了勾股定理、倍角公式,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{5}{2}$ | B. | $\frac{5\sqrt{2}}{2}$ | C. | $\frac{\sqrt{10}}{2}$ | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $({\frac{1}{3},\frac{1}{2}})$ | B. | $({\frac{1}{3},\frac{1}{2}})∪({1,+∞})$ | C. | (1,+∞) | D. | $({\frac{1}{3},1})∪({1,+∞})$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | “x<1”是“l(fā)og2(x+1)<1”的充分不必要條件 | |
B. | 命題“?x>0,2x>1”的否定是“$?{x_0}≤0,{2^{x_0}}≤1$” | |
C. | 命題“若a≤b,則ac2≤bc2”的逆命題為真命題 | |
D. | 命題“若a+b≠5,則a≠2或b≠3”為真命題. |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $[0,\frac{5}{2}]$ | B. | [-1,4] | C. | $[-\frac{1}{2},2]$ | D. | [-5,5] |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com