10.第24屆國際數(shù)學家大會會標是以我國古代數(shù)學家趙爽的弦圖為基礎(chǔ)進行設(shè)計的.如下圖會標是由四個全等的直角三角形與一個小正方形拼成的一個大正方形,如果小正方形的面積為1,大正方形的面積為25,直角三角形中較大的銳角為θ,那么$sin({θ+\frac{π}{3}})$=$\frac{{4+3\sqrt{3}}}{10}$.

分析 設(shè)直角三角形的邊長為a,a+1,a2+(a+1)2=25,a>0.解出利用倍角公式即可得出.

解答 解:設(shè)直角三角形的邊長為a,a+1,
則a2+(a+1)2=25,a>0.
解得a=3.
∴sinθ=$\frac{3}{5}$,cosθ=$\frac{4}{5}$.
∴$sin({θ+\frac{π}{3}})$=$\frac{\sqrt{3}}{2}×\frac{3}{5}+\frac{1}{2}×\frac{4}{5}$=$\frac{{4+3\sqrt{3}}}{10}$.
故答案為$\frac{{4+3\sqrt{3}}}{10}$.

點評 本題考查了勾股定理、倍角公式,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

16.解關(guān)于x的不等式:$\frac{ax}{x-1}≤1$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.若復數(shù)z=$\frac{3+4i}{1-i}$,則復數(shù)z的模|z|=( 。
A.$\frac{5}{2}$B.$\frac{5\sqrt{2}}{2}$C.$\frac{\sqrt{10}}{2}$D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.若loga(3a-1)>1(a>0,且a≠1),則實數(shù)a的取值范圍為( 。
A.$({\frac{1}{3},\frac{1}{2}})$B.$({\frac{1}{3},\frac{1}{2}})∪({1,+∞})$C.(1,+∞)D.$({\frac{1}{3},1})∪({1,+∞})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.定義在R上的奇函數(shù)f(x)滿足x>0時,f(x)=x-$\sqrt{x}$+1.
(1)求函數(shù)f(x)的解析式; 
(2)求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.如圖所示,在四棱錐S-ABCD中,AD∥BC,AD⊥AB,CD⊥平面SAD,SA=AD=2,AB=1,SB=$\sqrt{5}$,SD=2$\sqrt{2}$,M,N分別為AB,SC的中點.
(1)證明:AB∥CD;
(2)證明:平面SMC⊥平面SCD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.下列說法正確的是( 。
A.“x<1”是“l(fā)og2(x+1)<1”的充分不必要條件
B.命題“?x>0,2x>1”的否定是“$?{x_0}≤0,{2^{x_0}}≤1$”
C.命題“若a≤b,則ac2≤bc2”的逆命題為真命題
D.命題“若a+b≠5,則a≠2或b≠3”為真命題.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知函數(shù)f(x)=(2-a)lnx+$\frac{1}{x}$+2ax(a≤0).
(Ⅰ)當a=0時,求f(x)的極值;
(Ⅱ)當a<0時,討論f(x)的單調(diào)性;
(Ⅲ)若對任意的a∈(-3,-2)及x1,x2∈[1,3],恒有(m+ln3)a-2ln3>|f(x1)-f(x2)|成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知函數(shù)y=f(x)定義域是[-2,3],則y=f(2x-1)的定義域是( 。
A.$[0,\frac{5}{2}]$B.[-1,4]C.$[-\frac{1}{2},2]$D.[-5,5]

查看答案和解析>>

同步練習冊答案