11.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若a1+a13=4,則S1326.

分析 利用等差數(shù)列通項(xiàng)公式直接求解.

解答 解:∵等差數(shù)列{an}的前n項(xiàng)和為Sn,a1+a13=4,
∴S13=$\frac{13}{2}({a}_{1}+{a}_{13})$=$\frac{13}{2}×4=26$.
故答案為:26.

點(diǎn)評 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意等差數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知AD為△ABC的中線,則$\overrightarrow{AD}$=( 。
A.$\overrightarrow{AB}$+$\overrightarrow{AC}$B.$\overrightarrow{AB}$-$\overrightarrow{AC}$C.$\frac{1}{2}$$\overrightarrow{AB}$-$\frac{1}{2}$$\overrightarrow{AC}$D.$\frac{1}{2}$$\overrightarrow{AB}$+$\frac{1}{2}$$\overrightarrow{AC}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若求O的半徑為4,且球心O到平面α的距離為$\sqrt{3}$,則平面α截球O所得截面圓的面積為(  )
A.πB.10πC.13πD.52π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左右焦點(diǎn)與其短軸的一個端點(diǎn)是正三角形的三個頂點(diǎn),點(diǎn)D$({1,\frac{3}{2}})$在橢圓C上,直線l:y=kx+m與橢圓C相交于A、P兩點(diǎn),與x軸、y軸分別相交于點(diǎn)N和M,且PM=MN,點(diǎn)Q是點(diǎn)P關(guān)于x軸的對稱點(diǎn),QM的延長線交橢圓于點(diǎn)B,過點(diǎn)A、B分別作x軸的垂涎,垂足分別為A1、B1
(1)求橢圓C的方程;
(2)是否存在直線l,使得點(diǎn)N平分線段A1B1?若存在,求求出直線l的方程,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知E(1,0),K(-1,0),P是平面上一動點(diǎn),且滿足$|\overrightarrow{PE}|•|\overrightarrow{KE}|=\overrightarrow{PK}•\overrightarrow{EK}$.
(1)求點(diǎn)P的軌跡C對應(yīng)的方程;
(2)過點(diǎn)K的直線l與C相交于A、B兩點(diǎn)(A點(diǎn)在x軸上方),點(diǎn)A關(guān)于x軸的對稱點(diǎn)為D,且$\overrightarrow{EA}•\overrightarrow{EB}=-8$,求△ABD的外接圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下列4個命題中正確命題的個數(shù)是
(1)對于命題p:?x0∈R,使得x02-1≤0,則¬p:?x∈R都有x2-1>0
(2)已知X~N(2,σ2),P(x>2)=0.5
(3)已知回歸直線的斜率的估計(jì)值是2,樣本點(diǎn)的中心為(4,5),則回歸直線方程為$\stackrel{∧}{y}$=2x-3
(4)“x≥1”是“x+$\frac{1}{x}$≥2”的充分不必要條件.(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.事件A,B是相互獨(dú)立的,P(A)=0.4,P(B)=0.3,下列四個式子:①P(AB)=0.12;②P($\overline{A}$B)=0.18;③P(A$\overline{B}$)=0.28;④P($\overline{A}$$\overline{B}$)=0.42.其中正確的有(  )
A.4個B.2個C.3個D.1個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知α是第四象限角,tanα=-$\frac{5}{12}$,則sinα=( 。
A.$\frac{1}{5}$B.$\frac{5}{13}$C.$-\frac{5}{13}$D.$-\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)$f(x)=\frac{(4x+a)lnx}{3x+1}$,曲線y=f(x)在點(diǎn)(1,f(1))處的切線與直線x+y+1=0垂直.
(Ⅰ)求a的值;
(Ⅱ)若對于任意的x∈[1,e],f(x)≤mx恒成立,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案