19.在數(shù)列{an}中,a2=3且an+1+2an=0,則a1+a3的值是-$\frac{15}{2}$.

分析 由題意可得數(shù)列{an}為以-2為公比的等比數(shù)列,再根據(jù)a2=3,即可求出答案.

解答 解:a2=3且an+1+2an=0,
∴an+1=-2an
∴數(shù)列{an}為以-2為公比的等比數(shù)列,
∴a1+a3=$\frac{{a}_{2}}{q}$+a2q=$\frac{3}{-2}$+3×(-2)=-$\frac{15}{2}$,
故答案為:-$\frac{15}{2}$

點(diǎn)評(píng) 本題考查了等比數(shù)列的性質(zhì)和定義,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1的焦點(diǎn)在x軸上,橢圓E的左頂點(diǎn)為A,斜率為k(k>0)的直線交橢圓E于A、B兩點(diǎn),點(diǎn)C在橢圓E上,AB⊥AC,直線AC交y軸于點(diǎn)D
(Ⅰ)當(dāng)點(diǎn)B為橢圓的上頂點(diǎn),△ABD的面積為2ab時(shí),求橢圓的離心率;
(Ⅱ)當(dāng)b=$\sqrt{3}$,2|AB|=|AC|時(shí),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知集合A={x|x-1<0},B={x∈N|x<4},則(∁RA)∩B=( 。
A.{0}B.{1,2,3}C.{1}D.{1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在三棱錐P-ABC中,平面PAB⊥平面ABC,AP⊥BP,AC⊥BC,∠PAB=60°,∠ABC=45°,D是AB中點(diǎn),E,F(xiàn)分別為PD,PC的中點(diǎn).
(Ⅰ)求證:AE⊥平面PCD;
(Ⅱ)求二面角B-PA-C的余弦值;
(Ⅲ)在棱PB上是否存在點(diǎn)M,使得CM∥平面AEF?若存在,求$\frac{PM}{PB}$的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率為$\frac{{\sqrt{2}}}{2}$,右焦點(diǎn)為F,點(diǎn)B(0,1)在橢圓C上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點(diǎn)$(1,\frac{2}{k}]$的直線交橢圓C于M,N兩點(diǎn),交直線x=2于點(diǎn)P,設(shè)$\overrightarrow{PM}=λ\overrightarrow{MF}$,$\overrightarrow{PN}=μ\overrightarrow{NF}$,求證:λ+μ為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,正方形ABCD和梯形ACEF所在的平面相互垂直,EF∥AC,AF⊥AC,G為AD的中點(diǎn),$AB=AF=2,EF=\sqrt{2}$.
(1)求證:FG∥平面CDE;
(2)求二面角A-DF-E的余弦值;
(3)設(shè)點(diǎn)P是線段DE上的動(dòng)點(diǎn),是否存在點(diǎn)P使得直線BP⊥平面DEF,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.tan330°=-$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.等差數(shù)列{an}的前n項(xiàng)和為Sn,且$\frac{S_6}{S_3}=4$,則$\frac{S_9}{S_6}$=( 。
A.$\frac{9}{4}$B.$\frac{2}{3}$C.$\frac{5}{3}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知命題p:方程$\frac{{x}^{2}}{2m}$-$\frac{{y}^{2}}{m-1}$=1表示焦點(diǎn)在y軸上的橢圓,命題q:雙曲線$\frac{{y}^{2}}{5}$-$\frac{{x}^{2}}{m}$=1的離心率e∈(1,2),若p且q為假,p 或 q為真,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案