A. | x=kπ+$\frac{π}{2}$,k∈Z | B. | x=$\frac{kπ}{2}$+$\frac{π}{4}$,k∈Z | C. | x=2kπ+π,k∈Z | D. | x=kπ+$\frac{π}{4}$,k∈Z |
分析 由題意利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的圖象的對稱性,得出結(jié)論.
解答 解:將函數(shù)y=cos2x的圖象向左平移$\frac{π}{4}$個單位長度,可得y=cos(2x+$\frac{π}{2}$)=-sin2x的圖象;
再向下平移1個單位長度,可得y=-sin2x-1的圖象,令2x=kπ+$\frac{π}{2}$,求得x=$\frac{kπ}{2}$+$\frac{π}{4}$,k∈Z,
故所得圖象的對稱軸為 x=$\frac{kπ}{2}$+$\frac{π}{4}$,k∈Z,
故選:B.
點評 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的圖象的對稱性,屬于基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (2,+∞) | B. | (0,$\frac{4\sqrt{6}}{9}$) | C. | (-∞,-$\frac{4\sqrt{6}}{9}$) | D. | ($\frac{4\sqrt{6}}{9}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{16\sqrt{2}π}{3}$ | B. | 64$\sqrt{2}$π | C. | 32π | D. | 8π |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{3}{4}$ | B. | $\frac{3}{4}$ | C. | -$\frac{4}{3}$ | D. | $\frac{4}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{54}{4}$ | B. | -6 | C. | 6 | D. | $\frac{54}{4}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com