8.《九章算術(shù)》是我國數(shù)學(xué)史上堪與歐幾里得《幾何原本》相媲美的數(shù)學(xué)名著.其中,將底面為長方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽馬;將四個(gè)面都為直角三角形的四面體稱之為鱉膈.已知直三棱柱A1B1C1-ABC中,AB⊥BC,AB=3,$BC=4,A{A_1}=5\sqrt{3}$,將直三棱柱沿一條棱和兩個(gè)面的對角線分割為一個(gè)陽馬和一個(gè)鱉膈,則鱉膈的體積與其外接球的體積之比為(  )
A.$\sqrt{3}:15π$B.$3\sqrt{3}:5π$C.$3\sqrt{3}:50π$D.$3\sqrt{3}:25π$

分析 分別求出鱉膈的體積與其外接球的體積,即可得出結(jié)論.

解答 解:由題意,鱉膈的體積=$\frac{1}{3}×\frac{1}{2}×3×4×5\sqrt{3}$=10$\sqrt{3}$,
其外接球的半徑為$\frac{1}{2}\sqrt{25+75}$=5,體積為$\frac{4}{3}π•{5}^{3}$=$\frac{500}{3}π$,
∴鱉膈的體積與其外接球的體積之比為10$\sqrt{3}$:$\frac{500}{3}π$=3$\sqrt{3}$:50π,
故選C.

點(diǎn)評 本題考查鱉膈的體積與其外接球的體積,考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在直角坐標(biāo)系xOy中,直線C1:$y=-\sqrt{3}x$,曲線C2的參數(shù)方程是$\left\{\begin{array}{l}x=-\sqrt{3}+cosφ\\ y=-2+sinφ\end{array}\right.$(φ為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.
(Ⅰ)求C1的極坐標(biāo)方程和C2的普通方程;
(Ⅱ)把C1繞坐標(biāo)原點(diǎn)沿順時(shí)針方向旋轉(zhuǎn)$\frac{π}{3}$得到直線C3,C3與C2交于A,B兩點(diǎn),求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.秦九韶是我國南宋時(shí)期的數(shù)學(xué)家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)學(xué)九章》中提出的多項(xiàng)式求值的秦九韶算法,f(x)=anxn+an-1xn-1+…+a1x+a0改寫成如下形式f(x)=(…((anx+an-1)x+an-2)x+…a1)x+a0.至今仍是比較先進(jìn)的算法,特別是在計(jì)算機(jī)程序應(yīng)用上,比英國數(shù)學(xué)家取得的成就早800多年.如圖所示的程序框圖給出了利用秦九韶算法求某多項(xiàng)式值的一個(gè)實(shí)例,若輸入n,x的值分別為5,2,則輸出v的值為(  )
A.130B.120C.110D.100

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知定義在R上的函數(shù)f(x)=2|x-m|-1(m∈R)為偶函數(shù),記a=f(-2),b=f(log25),c=f(2m),則a,b,c的大小關(guān)系為( 。
A.a<b<cB.c<a<bC.a<c<bD.c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知數(shù)列{an}中,an2+2an-n2+2n=0(n∈N+
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式
(Ⅱ)求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.雙曲線mx2+ny2=1(mn<0)的一條漸近線方程為$y=\sqrt{3}x$,則它的離心率為( 。
A.2B.$\frac{{2\sqrt{3}}}{3}$C.$\sqrt{3}$或$\frac{{2\sqrt{3}}}{3}$D.2或$\frac{{2\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知函數(shù)$f(x)=\left\{\begin{array}{l}{log_2}(x-1),x≥2\\{x^2}-2x,x<2\end{array}\right.$,則f(f(3))=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知集合A={x|x≥3或x≤1},B={x|x2-6x+8<0},則(∁RA)∩B=( 。
A.(1,3)B.(1,4)C.(2,3)D.(2,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.2017年由央視舉辦的一檔文化益智節(jié)目《中國詩詞大會(huì)》深受觀眾喜愛,某記者調(diào)查了部分年齡在[10,70]的觀眾,得到如下頻率分布直方圖.若第四、五、六組的人數(shù)依次成等差數(shù)列,且第六組有4人.
(1)請補(bǔ)充完整頻率分布直方圖,并估計(jì)這組數(shù)據(jù)的平均數(shù)$\overline x$;
(2)現(xiàn)根據(jù)觀看年齡,從第四組和第六組的所有觀眾中任意選2人,記他們的年齡分別為x,y,若|x-y|≥10,則稱此2人為“最佳詩詞搭檔”,試求選出的2人為“最佳詩詞搭檔”的概P;
(3)以此樣本的頻率當(dāng)作概率,現(xiàn)隨機(jī)從這組樣本中選出3名觀眾,求年齡不低于40歲的人數(shù)ξ的分布列及期望.

查看答案和解析>>

同步練習(xí)冊答案