分析 設(shè)所求圓C的方程為x2+y2+Dx+Ey+F=0,由圓經(jīng)過點(diǎn)A(1,0)與B(0,1),可得系數(shù)的方程組,再令y=0,利用在x軸上截得的弦長,由此求得D,E,F(xiàn)的值,從而求得圓的一般方程.
解答 解:設(shè)所求圓的方程為x2+y2+Dx+Ey+F=0,
由題意,得$\left\{\begin{array}{l}1+D+F=0\\ 1+E+F=0\\ \sqrt{{D^2}-4F}=6\end{array}\right.$解得$\left\{\begin{array}{l}D=4\\ E=4\\ F=-5\end{array}\right.$或$\left\{\begin{array}{l}D=-8\\ E=-8\\ F=7.\end{array}\right.$
所以所求圓的方程為x2+y2+4x+4y-5=0或x2+y2-8x-8y+7=0.
點(diǎn)評(píng) 本題主要考查求圓的一般方程的方法,直線和圓相交的性質(zhì),弦長公式的應(yīng)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 回歸分析和獨(dú)立性檢驗(yàn)沒有什么區(qū)別 | |
B. | 回歸分析是對(duì)兩個(gè)變量準(zhǔn)確關(guān)系的分析,而獨(dú)立性檢驗(yàn)是分析兩個(gè)變量之間的不確定關(guān)系 | |
C. | 回歸分析研究兩個(gè)變量之間的相關(guān)關(guān)系,獨(dú)立性檢驗(yàn)是對(duì)兩個(gè)變量是否具有某種關(guān)系的一種檢驗(yàn) | |
D. | 獨(dú)立性檢驗(yàn)可以100%確定兩個(gè)變量之間是否具有某種關(guān)系 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2,7 | B. | 2,6 | C. | 3,7 | D. | 3,6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2個(gè) | B. | 3個(gè) | C. | 4個(gè) | D. | 5個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {(-1,-1),(1,-1)} | B. | {-1} | C. | [-1,0] | D. | [-$\sqrt{2}$,0] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x-3y+5=0 | B. | x-3y+15=0 | C. | x+3y-5=0 | D. | x+3y-15=0 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com