3.已知正項(xiàng)等差數(shù)列{an}的前n(n∈N*)項(xiàng)和為Sn,a3=3,且λSn=anan+1,在正項(xiàng)等比數(shù)列{bn}中,b1=2λ,b3=a15+1.
(1)求數(shù)列{an}及{bn}的通項(xiàng)公式;
(2)設(shè)數(shù)列{cn}的前n(n∈N*)項(xiàng)和為Tn,且cn=$\left\{\begin{array}{l}{{a}_{n}+1,n為正奇數(shù)}\\{_{n},n為正偶數(shù)}\end{array}\right.$,求不等式T2n<n2+n+480的解集.

分析 (1)分別令n=1,2列方程,再根據(jù)等差數(shù)列的性質(zhì)即可求出a1,a2得出an,計(jì)算b1,b3得出公比得出bn;
(II)求出cn,根據(jù)分組求和法計(jì)算T2n,不等式T2n<n2+n+480?4n<181,⇒n≤3,即可.

解答 解:(1)λSn=anan+1,a3=3,∴λa1=a1a2,且λ(a1+a2)=a2a3
∴a2=λ,a1+a2=a3=3,①
∵數(shù)列{an}是等差數(shù)列,∴a1+a3=2a2,即2a2-a1=3,②
由①②得a1=1,a2=2,∴an=n,λ=2,
∴b1=4,b3=16,∴{bn}的公比q=2,∴bn=2n+1;
(2)∵cn=$\left\{\begin{array}{l}{{a}_{n}+1,n為正奇數(shù)}\\{_{n},n為正偶數(shù)}\end{array}\right.$,
∴T2n=(a1+a3+…a2n-1+n)+(b2+b4+…+b2n)=n2+n+$\frac{8(1-{4}^{n})}{1-4}$=${n}^{2}+n+\frac{8}{3}({4}^{n}-1)$.
不等式T2n<n2+n+480?4n<181,⇒n≤3,
又∈N+,∴不等式T2n<n2+n+480的解集為{1,2,3}

點(diǎn)評(píng) 本題考查了等差數(shù)列,等比數(shù)列的性質(zhì),分組法數(shù)列求和,屬于中檔題

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.兩條直線ρcos(θ-$\frac{π}{4}$)=2和tan θ=1的夾角為90°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若sin(π+x)+cos(π+x)=-$\frac{1}{5}$,x∈(0,π),則sin2x=-$\frac{24}{25}$,tanx=-$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=x|m-x|(x∈R),f(4)=0.
(Ⅰ)求m的值,并指出函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若方程f(x)=a只有一個(gè)實(shí)根,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知a,b>0,若$\frac{2}{a}$+$\frac{1}$=1,則2a+b的最小值時(shí)( 。
A.9B.8C.7D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下列函數(shù)中,奇函數(shù)是(  )
A.f(x)=|x|B.f(x)=xsinxC.y=2x-2-xD.y=($\sqrt{x}$)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知z是復(fù)數(shù),且z+i,$\frac{2z}{1+i}$均為實(shí)數(shù)(i為虛數(shù)單位).
(Ⅰ)求復(fù)數(shù)z;
(Ⅱ)若|z+ai|=$\sqrt{5}$,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知函數(shù)f(x)=$\sqrt{3}$sin($\frac{π}{3}$-2x)-cos2x,則
(1)函數(shù)f(x)的最小正周期為π;
(2)函數(shù)f(x)的最大值為1;
(3)函數(shù)f(x)的單調(diào)增區(qū)間為[kπ-$\frac{2π}{3}$,≤kπ-$\frac{π}{6}$],k∈Z.理由根據(jù)余弦函數(shù)的增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知AM是△ABC的邊BC上的中線,若$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow$,則$\overrightarrow{AM}$等于$\frac{1}{2}$($\overrightarrow{a}$+$\overrightarrow$).

查看答案和解析>>

同步練習(xí)冊(cè)答案