分析 (1)分別令n=1,2列方程,再根據(jù)等差數(shù)列的性質(zhì)即可求出a1,a2得出an,計(jì)算b1,b3得出公比得出bn;
(II)求出cn,根據(jù)分組求和法計(jì)算T2n,不等式T2n<n2+n+480?4n<181,⇒n≤3,即可.
解答 解:(1)λSn=anan+1,a3=3,∴λa1=a1a2,且λ(a1+a2)=a2a3,
∴a2=λ,a1+a2=a3=3,①
∵數(shù)列{an}是等差數(shù)列,∴a1+a3=2a2,即2a2-a1=3,②
由①②得a1=1,a2=2,∴an=n,λ=2,
∴b1=4,b3=16,∴{bn}的公比q=2,∴bn=2n+1;
(2)∵cn=$\left\{\begin{array}{l}{{a}_{n}+1,n為正奇數(shù)}\\{_{n},n為正偶數(shù)}\end{array}\right.$,
∴T2n=(a1+a3+…a2n-1+n)+(b2+b4+…+b2n)=n2+n+$\frac{8(1-{4}^{n})}{1-4}$=${n}^{2}+n+\frac{8}{3}({4}^{n}-1)$.
不等式T2n<n2+n+480?4n<181,⇒n≤3,
又∈N+,∴不等式T2n<n2+n+480的解集為{1,2,3}
點(diǎn)評(píng) 本題考查了等差數(shù)列,等比數(shù)列的性質(zhì),分組法數(shù)列求和,屬于中檔題
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 9 | B. | 8 | C. | 7 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=|x| | B. | f(x)=xsinx | C. | y=2x-2-x | D. | y=($\sqrt{x}$)2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com