8.設(shè)U=R,A=$\left\{{x\left|{y=\sqrt{x}}\right.}\right\},B=\left\{{y\left|{y=-{x^2}}\right.}\right\}$,則A∩(∁UB)=( 。
A.φB.RC.{x|x>0}D.{0}

分析 求定義域、值域化簡(jiǎn)A、B,再根據(jù)集合的定義計(jì)算即可.

解答 解:U=R,A={x|y=$\sqrt{x}$}={x|x≥0},
B={y|y=-x2}={y|y≤0},
∴∁UB={y|y>0},
∴A∩(∁UB)={x|x>0}.
故選:C.

點(diǎn)評(píng) 本題考查了求函數(shù)的定義域、值域以及集合的運(yùn)算問題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.“累積凈化量(CCM)”是空氣凈化器質(zhì)量的一個(gè)重要衡量指標(biāo),它是指空氣凈化器從開始使用到凈化效率為50%時(shí)對(duì)顆粒物的累積凈化量,以克表示.根據(jù)GB/T18801-2015《空氣凈化器》國(guó)家標(biāo)準(zhǔn),對(duì)空氣凈化器的累積凈化量(CCM)有如下等級(jí)劃分:
 累積凈化量(克) (3,5] (5,8] (8,12] 12以上
 等級(jí) P1 P2 P3 P4
為了了解一批空氣凈化器(共2000臺(tái))的質(zhì)量,隨機(jī)抽取n臺(tái)機(jī)器作為樣本進(jìn)行估計(jì),已知這n臺(tái)機(jī)器的
累積凈化量都分布在區(qū)間(4,14]中,按照(4,6],(6,8],(8,10],(10,12],(12,14],均勻分組,其中累積凈化量在(4,6]的所有數(shù)據(jù)有:4.5,4.6,5.2,5.7和5.9,并繪制了如下頻率分布直方圖.
(Ⅰ)求n的值及頻率分布直方圖中的x值;
(Ⅱ)以樣本估計(jì)總體,試估計(jì)這批空氣凈化器(共2000臺(tái))中等級(jí)為P2的空氣凈化器有多少臺(tái)?
(Ⅲ)從累積凈化量在(4,6]的樣本中隨機(jī)抽取2臺(tái),求恰好有1臺(tái)等級(jí)為P2的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知數(shù)列{an}的前n項(xiàng)和為${S_n}=2{n^2}-30n$,則使得Sn最小的序號(hào)n的值為7或8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.定義在R上的奇函數(shù)f(x)關(guān)于點(diǎn)(2,1)對(duì)稱,則f(6)=( 。
A.9B.7C.5D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若數(shù)據(jù)a1,a2,a3,a5,a6這6個(gè)數(shù)據(jù)的平均數(shù)為$\overline{x}$,方差為0.20,則數(shù)據(jù)a1,a2,a3,a5,a6,$\overline{x}$這7個(gè)數(shù)據(jù)的方差是$\frac{6}{35}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.某重點(diǎn)中學(xué)100位學(xué)生在市統(tǒng)考中的理科綜合分?jǐn)?shù),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分組的頻率分布直方圖如圖.
(Ⅰ)求直方圖中x的值;
(Ⅱ)求理科綜合分?jǐn)?shù)的眾數(shù)和中位數(shù);
(Ⅲ)在理科綜合分?jǐn)?shù)為[220,240),[240,260),[260,280),[280,300]的四組學(xué)生中,用分層抽樣的方法抽取11名學(xué)生,則理科綜合分?jǐn)?shù)在[220,240)的學(xué)生中應(yīng)抽取多少人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)是R上的奇函數(shù),當(dāng)x>0時(shí)為減函數(shù),且f(2)=0,則{x|f(x-2)>0}=( 。
A.{x|0<x<2或x>4}B.{x|x<0或x>4}C.{x|0<x<2或x>2}D.{x|0<x<2或2<x<4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=(ax+b)lnx-bx+3在(1,f(1))處的切線方程為y=2.
(1)求a,b的值;
(2)求函數(shù)f(x)的極值.
(3)若g(x)=f(x)+kx在(1,3)是單調(diào)函數(shù),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知雙曲線$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的離心率為$\sqrt{5}$,且點(diǎn)P($\sqrt{{a}^{2}+^{2}}$,0)到其漸近線的距離為8,則C的實(shí)軸長(zhǎng)為( 。
A.2B.4C.8D.16

查看答案和解析>>

同步練習(xí)冊(cè)答案