3.已知z1=1+i,z2=1-i,(i是虛數(shù)單位),則$\frac{{z}_{1}}{{z}_{2}}$+$\frac{{z}_{2}}{{z}_{1}}$=0.

分析 根據(jù)復(fù)數(shù)代數(shù)形式的運(yùn)算法則,計(jì)算即可.

解答 解:z1=1+i,z2=1-i,
則$\frac{{z}_{1}}{{z}_{2}}$+$\frac{{z}_{2}}{{z}_{1}}$=$\frac{1+i}{1-i}$+$\frac{1-i}{1+i}$
=$\frac{{(1+i)}^{2}}{{1}^{2}{-i}^{2}}$+$\frac{{(1-i)}^{2}}{{1}^{2}{-i}^{2}}$
=$\frac{2i}{2}$+$\frac{-2i}{2}$
=0.
故答案為:0.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)代數(shù)形式的運(yùn)算問(wèn)題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.等差數(shù)列{an}的前n項(xiàng)和為Sn,且S5=-15,a2+a5=-2,則公差d等于(  )
A.5B.4C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=t}\\{y=mt}\end{array}\right.$(t為參數(shù)),圓C的參數(shù)方程為$\left\{\begin{array}{l}{x=cosa}\\{y=1+sina}\end{array}\right.$(a為參數(shù)).
(Ⅰ)若直線l與圓C的相交弦長(zhǎng)不小于$\sqrt{2}$,求實(shí)數(shù)m的取值范圍;
(Ⅱ)若點(diǎn)A的坐標(biāo)為(2,0),動(dòng)點(diǎn)P在圓C上,試求線段PA的中點(diǎn)Q的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=|x-2|+|2x+1|.
(Ⅰ)解不等式f(x)>5;
(Ⅱ)若關(guān)于x的方程$\frac{1}{f(x)-4}$=a的解集為空集,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)$f(x)=\frac{x+1}{e^x}$,A(x1,m),B(x2,m)是曲線y=f(x)上兩個(gè)不同的點(diǎn).
(Ⅰ)求f(x)的單調(diào)區(qū)間,并寫(xiě)出實(shí)數(shù)m的取值范圍;
(Ⅱ)證明:x1+x2>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.設(shè)定義在區(qū)間[-m,m]上的函數(shù)f(x)=log2$\frac{1+nx}{1-2x}$是奇函數(shù)(n≠-2),則nm的范圍為(1,$\sqrt{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)$f(x)=x+\frac{1}{x}$.
(1)用定義證明f(x)在[1,+∞)上是增函數(shù);
(2)求f(x)在[1,4]上的最大值及最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.雙曲線2x2-y2=16的實(shí)軸長(zhǎng)等于4$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知集合$A=\{x|{(\frac{1}{2})^x}≤1\}$,B={x|x2-2x-8≤0},則A∩B=(  )
A.{x|-2≤x≤0}B.{x|2≤x≤4}C.{x|0≤x≤4}D.{x|x≤-2}

查看答案和解析>>

同步練習(xí)冊(cè)答案