4.已知無窮等比數(shù)列{an}中,${a_1}=\frac{3}{2}$,${a_2}{a_3}=-\frac{1}{12}$,則$\lim_{n→∞}({a_1}+{a_2}+…+{a_n})$=$\frac{9}{8}$.

分析 設無窮等比數(shù)列{an}的公比為q,運用等比數(shù)列的通項公式解方程可得q,再由等比數(shù)列的前n項和的公式,結合極限公式,即可得到所求值.

解答 解:設無窮等比數(shù)列{an}的公比為q,
由${a_1}=\frac{3}{2}$,${a_2}{a_3}=-\frac{1}{12}$,
可得$\frac{3}{2}$q•$\frac{3}{2}$q2=-$\frac{1}{12}$,
解得q=-$\frac{1}{3}$,
則$\lim_{n→∞}({a_1}+{a_2}+…+{a_n})$=$\underset{lim}{n→∞}$$\frac{{a}_{1}(1-{q}^{n})}{1-q}$
=$\underset{lim}{n→∞}$$\frac{\frac{3}{2}[1-(-\frac{1}{3})^{n}]}{1-(-\frac{1}{3})}$
=$\frac{\frac{3}{2}}{1-(-\frac{1}{3})}$=$\frac{9}{8}$.
故答案為:$\frac{9}{8}$.

點評 本題考查數(shù)列的極限的求法,注意運用無窮遞縮等比數(shù)列的極限公式,考查等比數(shù)列的通項公式和求和公式的運用,以及運算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

4.某同學在一次研究性學習中發(fā)現(xiàn),以下五個式子的值都等于同一個常數(shù):
①sin213°+cos217°-sin13°cos17°;
②sin215°+cos215°-sin15°cos15°;
③sin218°+cos212°-sin18°cos12°;
④sin2(-18°)+cos248°-sin(-18°)cos48°
⑤sin2(-25°)+cos255°-sin(-25°)cos55°(1)試從上述五個式子中選擇一個,求出這個常數(shù);
(2)根據(jù)(1)的計算結果,將該同學的發(fā)現(xiàn)推廣為一三角恒等式,并證明你的結論.
(參考公式:sin(α±β)=sinαcosβ±cosαsinβ,cos(α±β)=cosαcosβ?sinαsinβsin2α=2sinαcosα,cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.在(2x+a)5的展開式中,含x4項的系數(shù)等于160,則${∫}_{0}^{a}$(ex+2x)dx等于(  )
A.e2+3B.e2+4C.e+1D.e+2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.在等比數(shù)列{an}中,若a5+a6+a7+a8=$\frac{15}{8}$,a6a7=-$\frac{9}{8}$,則$\frac{1}{{a}_{5}}$+$\frac{1}{{a}_{6}}$+$\frac{1}{{a}_{7}}$+$\frac{1}{{a}_{8}}$=-$\frac{5}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知集合{φ|f(x)=sin[(x-2φ)π]+cos[(x-2φ)π]為奇函數(shù),且|logaφ|<1}的子集個數(shù)為4,則a的取值范圍為($\frac{8}{13},\frac{5}{8}$)∪($\frac{8}{5},\frac{13}{8}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知在等差數(shù)列{an}中,a3=5,a1+a19=-18
(1)求公差d及通項an
(2)求數(shù)列 {an}的前n項和Sn及使得Sn的值取最大時n的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.(2)如圖,在△ABC中,D是BC的中點,$\overrightarrow{AE}$=$\overrightarrow{FD}$=$\frac{1}{4}$$\overrightarrow{AD}$,
(i)若$\overrightarrow{BA}$•$\overrightarrow{CA}$=4,$\overrightarrow{BF}$•$\overrightarrow{CF}$=-1,求$\overrightarrow{BE}$•$\overrightarrow{CE}$的值;
(ii)若P為AD上任一點,且$\overrightarrow{PA}$•$\overrightarrow{PC}$≥$\overrightarrow{EA}$•$\overrightarrow{EC}$恒成立,求證:2AC=BC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知函數(shù)f(x)=sin(2x+φ),其中|φ|<π,若f(x)≤|f($\frac{π}{6}$)|對x∈R恒成立,且f($\frac{π}{2}$)>f(π),則f(x)的遞增區(qū)間是( 。
A.[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$](k∈Z)B.[kπ,kπ+$\frac{π}{2}$](k∈Z)C.[kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$]((k∈Z)D.[kπ-$\frac{π}{2}$,kπ]((k∈Z)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.(1)已知角α終邊經(jīng)過點P(-3,-4),求sinα,cosα,tanα的值?
(2)已知角α是第二象限角,且$sinα=\frac{3}{5}$,求cosα,tanα的值?

查看答案和解析>>

同步練習冊答案