8.如圖,在斜三棱柱ABC-A1B1C1中,側(cè)面ACC1A1⊥底面ABC,底面ABC是等腰直角三角形,CA=CB,A1B⊥AC1
(1)求證:平面A1BC⊥平面ABC1;
(2)若∠A1AC=60°,CA=2,求三棱錐A1-B1BC的體積.

分析 (1)推導出AC⊥BC,從而BC⊥側(cè)面ACC1A,進而BC⊥AC1,再由A1B⊥AC1,得到AC1⊥平面A1BC,由此能證明平面A1BC⊥平面ABC1
(2)三棱錐A1-B1BC的體積${V}_{{A}_{1}-{B}_{1}BC}$=${V}_{{B}_{1}-{A}_{1}BC}$,由此能求出結(jié)果.

解答 證明:(1)∵側(cè)面ACC1A1⊥底面ABC,底面ABC是等腰直角三角形,CA=CB,
∴AC⊥BC,∵側(cè)面ACC1A1∩底面ABC=AC,
∴BC⊥側(cè)面ACC1A,∵AC1?側(cè)面ACC1A1,∴BC⊥AC1,
∵A1B⊥AC1,BC∩A1B=B,∴AC1⊥平面A1BC,
∵AC1?ABC1,∴平面A1BC⊥平面ABC1
解:(2)∵BC∥B1C1,AC1⊥平面A1BC,
∴B1到平面A1BC的距離d=$\frac{1}{2}$AC1,
∵底面ABC是等腰直角三角形,CA=CB=2,∠A1AC=60°,AC1⊥平面A1BC,
∴四邊形ACC1A1是邊長為2的菱形,∴d=$\frac{1}{2}A{C}_{1}$=$\sqrt{4-1}$=$\sqrt{3}$,A1C=2,
∴${S}_{△{A}_{1}BC}$=$\frac{1}{2}×BC×{A}_{1}C$=$\frac{1}{2}×2×2$=2,
∴三棱錐A1-B1BC的體積${V}_{{A}_{1}-{B}_{1}BC}$=${V}_{{B}_{1}-{A}_{1}BC}$=$\frac{1}{3}×d×{S}_{△{A}_{1}BC}$=$\frac{1}{3}×\sqrt{3}×2$=$\frac{2\sqrt{3}}{3}$.

點評 本題考查面面垂直的證明,考查柱、錐、臺體的體積,考查推理論證能力,考查空間想象能力與計算能力,考查等價轉(zhuǎn)化思想及數(shù)形結(jié)合思想,是中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

18.已知i為虛數(shù)單位,則復數(shù)$\frac{2016}{1+i}$的虛部是( 。
A.-1008B.-1008iC.1008D.2016

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知S,A,B,C是球O表面上的點,SA⊥平面ABC,AB⊥BC,AS=AB=1,$BC=\sqrt{3}$,則球O的表面積為5π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.復數(shù)z滿足(z-i)(2-i)=5,則z所對應的點在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.在三棱錐ABCD中,BC⊥CD,Rt△BCD斜邊上的高為1,三棱錐ABCD的外接球的直徑是AB,若該外接球的表面積為16π,則三棱錐ABCD體積的最大值為( 。
A.$\frac{1}{3}$B.$\frac{2}{3}$C.1D.$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.設f(x)=$\left\{\begin{array}{l}{a^x},x≥0\\{log_a}({{x^2}+{a^2}}),x<0\end{array}$,且f(2)=4,則f(-2)等于(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.定義在R上的函數(shù)y=f(x)為減函數(shù),且函數(shù)y=f(x-1)的圖象關(guān)于點(1,0)對稱,若f(x2-2x)+f(2b-b2)≤0,且0≤x≤2,則x-b的取值范圍是( 。
A.[-2,0]B.[-2,2]C.[0,2]D.[0,4]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.設x,y滿足不等式組$\left\{\begin{array}{l}{x+y-6≤0}\\{x-y-2≤0}\\{x≥0}\end{array}\right.$,則z=-2x+y的最小值為-6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知定義在R上的奇函數(shù)f(x),當x>0時,f(x)的表達式是二次函數(shù),且f(1)=0,f(3)=0,f(2)=-1.
(1)求f(x),x∈(0,+∞)的表達式
(2)畫函數(shù)y=f(x),x∈R的圖象
(3)說出函數(shù)y=f(x),x∈(-5,-1]的值域.

查看答案和解析>>

同步練習冊答案