分析 (1)當A∈(0,$\frac{π}{2}$)時,|$\overrightarrow{n}$|2=($\frac{1+cosA}{2}$)2+sin2A=$-\frac{3}{4}(cosA-\frac{1}{3})^{2}$+$\frac{1}{3}$,即可求|$\overrightarrow{n}$|的取值范圍;
(2)$\overrightarrow{m}$•$\overrightarrow{n}$=2$\sqrt{3}$cos2$\frac{A}{2}$+sinA=$\sqrt{3}$cosA+sinA+$\sqrt{3}$=2sin(A+$\frac{π}{3}$)+$\sqrt{3}$,當A+$\frac{π}{3}$=$\frac{π}{2}$,即A=$\frac{π}{6}$時,$\overrightarrow{m}$•$\overrightarrow{n}$取最大值,利用正弦定理求出邊BC的長.
解答 解:(1)$\overrightarrow{n}$=(cos2$\frac{A}{2}$,sinA)=($\frac{1+cosA}{2}$,sinA),
∴|$\overrightarrow{n}$|2=($\frac{1+cosA}{2}$)2+sin2A=$-\frac{3}{4}(cosA-\frac{1}{3})^{2}$+$\frac{1}{3}$,
∵A∈(0,$\frac{π}{2}$),∴cosA∈(0,1),
∴|$\overrightarrow{n}$|的取值范圍是(0,$\frac{\sqrt{3}}{3}$];
(2)$\overrightarrow{m}$•$\overrightarrow{n}$=2$\sqrt{3}$cos2$\frac{A}{2}$+sinA=$\sqrt{3}$cosA+sinA+$\sqrt{3}$=2sin(A+$\frac{π}{3}$)+$\sqrt{3}$,
∵A∈(0,$\frac{π}{2}$),∴A+$\frac{π}{3}$∈($\frac{π}{3}$,$\frac{5π}{6}$),
∴A+$\frac{π}{3}$=$\frac{π}{2}$,即A=$\frac{π}{6}$時,$\overrightarrow{m}$•$\overrightarrow{n}$取最大值2+$\sqrt{3}$,
由正弦定理可得$\frac{BC}{sin\frac{π}{6}}$=$\frac{3}{sin\frac{2π}{3}}$,∴BC=$\sqrt{3}$.
點評 本題考查向量知識的運用,考查三角函數(shù)知識的運用,考查正弦定理,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 在區(qū)間($\frac{1}{e}$,1),(1,e)內(nèi)均有零點 | |
B. | 在區(qū)間($\frac{1}{e}$,1),(1,e)內(nèi)均無零點 | |
C. | 在區(qū)間($\frac{1}{e}$,1)內(nèi)有零點,在區(qū)間(1,e內(nèi)無零點 | |
D. | 在區(qū)間($\frac{1}{e}$,1)內(nèi)無零點,在區(qū)間(1,e)內(nèi)有零點 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 5 | B. | 4 | C. | 3 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
x | 1 | 2 | 3 | 4 | 5 |
y | 7 | 6 | 5 | 4 | 2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com