分析 (1)函數(shù)連續(xù)可導(dǎo),只需討論滿足f′(x)=0的點(diǎn)附近的導(dǎo)數(shù)的符號(hào)的變化情況,來(lái)確定極值點(diǎn),求出極值.
(2)曲線f(x)與x軸僅有一個(gè)交點(diǎn),可轉(zhuǎn)化成f(x)極大值<0或f(x)極小值>0即可.
解答 解:(1)令f'(x)=3x2-2x-1=0得:x1=-$\frac{1}{3}$,x2=1.
又∵當(dāng)x∈(-∞,-$\frac{1}{3}$)時(shí),f'(x)>0;
當(dāng)x∈(-$\frac{1}{3}$,1)時(shí),f'(x)<0;
當(dāng)x∈(1,+∞)時(shí),f'(x)>0;
∴x1=-$\frac{1}{3}$與x2=1分別為f(x)的極大值與極小值點(diǎn).
∴f(x)極大值=f(-$\frac{1}{3}$)=a+$\frac{5}{27}$;f(x)極小值=a-1;
(2)∵f(x)在(-∞,-$\frac{1}{3}$)上單調(diào)遞增,
∴當(dāng)x→-∞時(shí),f(x)→-∞;
又f(x)在(1,+∞)單調(diào)遞增,當(dāng)x→+∞時(shí),f(x)→+∞
∴當(dāng)f(x)極大值<0或f(x)極小值>0時(shí),曲線f(x)與x軸僅有一個(gè)交點(diǎn).
即a+$\frac{5}{27}$<0或a-1>0,
∴a∈(-∞,-$\frac{5}{27}$)∪(1,+∞).
點(diǎn)評(píng) 本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的極值,以及函數(shù)的單調(diào)性,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 28 | B. | 23 | C. | 18 | D. | 13 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -2 | B. | 2 | C. | -4 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {x|-1≤x≤1} | B. | {x|x≥0} | C. | {x|x≥0且x≠1} | D. | ∅ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | i>8 | B. | i>7 | C. | i>6 | D. | i>5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [-$\frac{1}{12}$,0] | B. | [-$\frac{1}{12}$,-$\frac{4}{49}$) | C. | (-$\frac{4}{49}$,0] | D. | [-$\frac{4}{49}$,0] |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com