分析 以E為原點(diǎn)建立坐標(biāo)系,設(shè)出各點(diǎn)坐標(biāo),根據(jù)條件列方程,得出B點(diǎn)坐標(biāo),代入向量的數(shù)量積公式化簡即可.
解答 解:以E為原點(diǎn),以BC為x軸建立平面直角坐標(biāo)系,
∵EA=1,ED=$\sqrt{3}$,
∴A在以E為圓心,以1為半徑的圓上,D在以E為圓心,以$\sqrt{3}$為半徑的圓上,
設(shè)A(cosθ,sinθ),B(-a,0),C(a,0),D($\sqrt{3}$cosα,$\sqrt{3}$sinα),
則$\overrightarrow{AB}$=(-a-cosθ,-sinθ),
$\overrightarrow{AC}$=(a-cosθ,-sinθ),
$\overrightarrow{BD}$=($\sqrt{3}$cosα+a,$\sqrt{3}$sinα),
$\overrightarrow{DC}$=(a-$\sqrt{3}$cosα,-$\sqrt{3}$sinα),
∴$\overrightarrow{AB}$•$\overrightarrow{AC}$=cos2θ-a2+sin2θ=1-a2=-1,∴a2=2,
∴$\overrightarrow{BD}$•$\overrightarrow{DC}$=a2-3cos2α-3sin2α=2-3=-1.
故答案:-1
點(diǎn)評(píng) 本題考查了平面向量的數(shù)量積運(yùn)算,建立坐標(biāo)系,將向量運(yùn)算轉(zhuǎn)化為坐標(biāo)運(yùn)算是關(guān)鍵,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\overrightarrow{{e}_{1}}$=(0,0),$\overrightarrow{{e}_{2}}$=(1,2) | B. | $\overrightarrow{{e}_{1}}$=(-1,2),$\overrightarrow{{e}_{2}}$=(5,-2) | ||
C. | $\overrightarrow{{e}_{1}}$=(3,5),$\overrightarrow{{e}_{2}}$=(6,10) | D. | $\overrightarrow{{e}_{1}}$=(2,-3),$\overrightarrow{{e}_{2}}$=(-2,3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 由(1+1)2>21,(2+1)2>22,(3+1)2>23,…,推斷:對(duì)一切n∈N*,(n+1)2>2n | |
B. | 由f(x)=xcosx滿足f(-x)=-f(x)對(duì)?x∈R都成立,推斷:f(x)=xcosx為奇函數(shù) | |
C. | 由圓x2+y2=r2的面積S=πr2,推斷:橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1的面積S=πab | |
D. | 由an=2n-1,求出S1=12,S2=22,S3=32,…,推斷:數(shù)列{an}的前n項(xiàng)和Sn=n2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①② | B. | ①②③ | C. | ①②④ | D. | ②④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com