18.已知函數(shù)f(x)=sin2x-2sin2x.
(I)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間.
(II)求函數(shù)f(x)在[-$\frac{π}{2}$,0]上的最小值.

分析 (I)利用降次公式,輔助角公式化簡,即可求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;
(II)求出內(nèi)層函數(shù)范圍,結(jié)合三角函數(shù)的性質(zhì)可得函數(shù)f(x)在[-$\frac{π}{2}$,0]上的最小值.

解答 解:(I)函數(shù)f(x)=sin2x-2sin2x.
化簡可得:f(x)=sin2x-1+cos2x=$\sqrt{2}$sin(2x+$\frac{π}{4}$)-1.
∴函數(shù)f(x)的最小正周期T=$\frac{2π}{2}=π$.
令$2kπ-\frac{π}{2}≤2x+\frac{π}{4}≤2kπ+\frac{π}{2}$.k∈Z.
可得:$kπ-\frac{3π}{8}$≤x≤$kπ+\frac{π}{8}$.
∴函數(shù)f(x)的單調(diào)遞增區(qū)間為[$kπ-\frac{3π}{8}$,$\frac{π}{8}+kπ$],k∈Z.
(II)由(I)函數(shù)f(x)=$\sqrt{2}$sin(2x+$\frac{π}{4}$)-1.
∵x∈[-$\frac{π}{2}$,0]上,
∴2x+$\frac{π}{4}$∈[$-\frac{3π}{4}$,$\frac{π}{4}$].
當(dāng)2x+$\frac{π}{4}$=$-\frac{π}{2}$時,f(x)取得最小值為$\sqrt{2}×(-1)-1$=$-\sqrt{2}-1$.
故得函數(shù)f(x)在[-$\frac{π}{2}$,0]上的最小值為-($\sqrt{2}+1$).

點評 本題主要考查三角函數(shù)的圖象和性質(zhì),利用公式化簡是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.如圖(Ⅰ)是反映某條公共汽車線路收支差額y與乘客量x之間關(guān)系的圖象,由于目前該條公交線路虧損,公司有關(guān)人員提出兩種調(diào)整建議,如圖(Ⅱ)(Ⅲ)所示(注:收支差額=營業(yè)所得的票價收入-付出的成本)
給出以下說法:①圖(Ⅱ)的建議是:提高成本,并提高票價;
②圖(Ⅱ)的建議是:降低成本,并保持票價不變;
③圖(Ⅲ)的建議是:提高票價,并降低成本;
④圖(Ⅲ)的建議是:提高票價,并保持成本不變.
其中說法正確的序號是(  )
A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)$f(x)=x+\frac{a^2}{x}$,g(x)=x+lnx,其中a>0.
(Ⅰ)當(dāng)a=2時,求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)若對任意的x1,x2∈[1,e](e為自然對數(shù)的底數(shù))都有f(x1)≥g(x2)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)函數(shù)f(x)=ax-1,g(x)=lnx,a∈R,設(shè)F(x)=f(x)-g(x).
(1)求曲線y=g(x)在x=1處的切線方程;
(2)求函數(shù)F(x)的單調(diào)區(qū)間;
(3)當(dāng)a>0時,若函數(shù)F(x)沒有零點,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若數(shù)列{an}滿足:a1=1,an+1=$\frac{1}{2}$an(n∈N*),則an=$\frac{1}{{2}^{n-1}}$;數(shù)列{an}的前n項和Sn=2-21-n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知直線2x-y+1=0與直線x+ay+2=0平行,則實數(shù)a的值為( 。
A.-2B.-$\frac{1}{2}$C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若點A(4,0)與點B(0,2)關(guān)于直線l對稱,則直線l的斜率為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在△ABC中,A(-1,0),B(2,0),C(-1,3),直線BC與y軸的交點為D,過點D的直線l平分△ABC的面積,則直線l的方程為8x-y+2=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知f(x)定義域為(0,+∞),f′(x)為f(x)的導(dǎo)函數(shù),且滿足f(x)>-(x+1)f′(x),則 不等式f(x+l)>(x-2)f(x2-5)的解集是( 。
A.(-2,3)B.(2,+∞)C.($\sqrt{5}$,3)D.($\sqrt{5}$,+∞)

查看答案和解析>>

同步練習(xí)冊答案