相關習題
 0  237109  237117  237123  237127  237133  237135  237139  237145  237147  237153  237159  237163  237165  237169  237175  237177  237183  237187  237189  237193  237195  237199  237201  237203  237204  237205  237207  237208  237209  237211  237213  237217  237219  237223  237225  237229  237235  237237  237243  237247  237249  237253  237259  237265  237267  237273  237277  237279  237285  237289  237295  237303  266669 

科目: 來源: 題型:填空題

8.下列命題是真命題的有④⑤
①平面內(nèi)與兩個定點F1,F(xiàn)2的距離之和等于常數(shù)的點的軌跡是橢圓;
②如果向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$,$\overrightarrow{{e}_{3}}$是三個不共線的向量,$\overrightarrow{a}$是空間任一向量,那么存在唯一一組實數(shù)λ1,λ2,λ3使得$\overrightarrow{a}$=λ1$\overrightarrow{{e}_{1}}$+λ2$\overrightarrow{{e}_{2}}$+λ3$\overrightarrow{{e}_{3}}$;
③方程y=$\sqrt{x}$與x=y2表示同一曲線;
④若命題p是命題q的充分非必要條件,則¬p是¬q的必要非充分條件;
⑤方程$\frac{{x}^{2}}{5-m}$+$\frac{{y}^{2}}{2-m}$=1表示雙曲線的充要條件是2<m<5.

查看答案和解析>>

科目: 來源: 題型:填空題

7.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),點F1,F(xiàn)2是橢圓的左右焦點,點A是橢圓上的點,△AF1F2的內(nèi)切圓的圓心為M,若$\overrightarrow{M{F}_{1}}$+2$\overrightarrow{M{F}_{2}}$+2$\overrightarrow{MA}$=0,則橢圓的離心率為$\frac{2}{3}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

6.已知函數(shù)$f(x)={e^{{x^2}+2x}}$,設$a=lg\frac{1}{5}\;\;,\;\;b={log_{\frac{1}{2}}}\frac{1}{3}\;\;,\;\;c={({\frac{1}{3}})^{0.5}}$,則有( 。
A.f(a)<f(b)<f(c)B.f(a)<f(c)<f(b)C.f(b)<f(c)<f(a)D.f(b)<f(a)<f(c)

查看答案和解析>>

科目: 來源: 題型:填空題

5.關于曲線$C:\frac{1}{x^2}+\frac{1}{y^2}=1$,有如下結論:
①曲線C關于原點對稱;
②曲線C關于直線x±y=0對稱;
③曲線C是封閉圖形,且封閉圖形的面積大于2π;
④曲線C不是封閉圖形,且它與圓x2+y2=2無公共點;
⑤曲線C與曲線$D:|x|+|y|=2\sqrt{2}$有4個交點,這4點構成正方形.其中所有正確結論的序號為①②④⑤.

查看答案和解析>>

科目: 來源: 題型:填空題

4.已知復數(shù)z與(z+2)2+5均為純虛數(shù),則復數(shù)z=±3i.

查看答案和解析>>

科目: 來源: 題型:解答題

3.已知橢圓x2+2y2=1上存在兩點A,B關于直線L:y=4x+b對稱,求實數(shù)b的取值范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

2.將函數(shù)$f(x)=\sqrt{3}sin\frac{x}{2}-cos\frac{x}{2}$的圖象向右平移$\frac{2π}{3}$個單位長度得到函數(shù)y=g(x)的圖象,則函數(shù)y=g(x)的一個單調(diào)減區(qū)間是( 。
A.$(-\frac{π}{2},-\frac{π}{4})$B.$(-\frac{π}{4},\frac{π}{2})$C.$(\frac{π}{2},π)$D.$(\frac{3π}{2},2π)$

查看答案和解析>>

科目: 來源: 題型:解答題

1.函數(shù)f(x)=ln(x+1)-x2-x
(Ⅰ)若關于x的函數(shù)h(x)=f(x)+$\frac{5}{2}$x-t在[0,2]上恰有兩個不同零點,求實數(shù)t的取值范圍;
(Ⅱ)求證:對任意的n∈N*,不等式ln(n+2)<1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$+ln2都成立.

查看答案和解析>>

科目: 來源: 題型:填空題

10.我國南宋著名數(shù)學家秦九韶發(fā)現(xiàn)了從三角形三邊求三角形面積的“三斜公式”,設△ABC三個內(nèi)角A、B、C所對的邊分別為a、b、c,面積為S,則“三斜求積”公式為$S=\sqrt{\frac{1}{4}[{{a^2}{c^2}-{{({\frac{{{a^2}+{c^2}-{b^2}}}{2}})}^2}}]}$.若a2sinC=4sinA,(a+c)2=12+b2,則用“三斜求積”公式求得△ABC的面積為$\sqrt{3}$.

查看答案和解析>>

科目: 來源: 題型:填空題

9.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右端點分別為A、B兩點,點C(0,$\sqrt{2}$b),若線段AC的垂直平分線過點B,則雙曲線的離心率為$\frac{\sqrt{10}}{2}$.

查看答案和解析>>

同步練習冊答案