相關習題
 0  237530  237538  237544  237548  237554  237556  237560  237566  237568  237574  237580  237584  237586  237590  237596  237598  237604  237608  237610  237614  237616  237620  237622  237624  237625  237626  237628  237629  237630  237632  237634  237638  237640  237644  237646  237650  237656  237658  237664  237668  237670  237674  237680  237686  237688  237694  237698  237700  237706  237710  237716  237724  266669 

科目: 來源: 題型:選擇題

12.若變量x,y滿足約束條件$\left\{\begin{array}{l}{x+2y≥0}\\{x-y≤0}\\{x-2y+2≥0}\end{array}\right.$則z=$\frac{y}{x-3}$的最小值等于( 。
A.-4B.-2C.-$\frac{1}{8}$D.0

查看答案和解析>>

科目: 來源: 題型:選擇題

11.在△ABC中,AC=$\sqrt{13}$,BC=1,B=60°,則△ABC的面積為( 。
A.$\sqrt{3}$B.2C.2$\sqrt{3}$D.3

查看答案和解析>>

科目: 來源: 題型:選擇題

10.中國詩詞大會的播出引發(fā)了全民的讀書熱,某小學語文老師在班里開展了一次詩詞默寫比賽,班里40名學生得分數(shù)據(jù)的莖葉圖如圖所示.若規(guī)定得分不小于85分的學生得到“詩詞達人”的稱號,小于85分且不小于70分的學生得到“詩詞能手”的稱號,其他學生得到“詩詞愛好者”的稱號,根據(jù)該次比賽的成就按照稱號的不同進行分層抽樣抽選10名學生,則抽選的學生中獲得“詩詞能手”稱號的人數(shù)為( 。
A.2B.4C.5D.6

查看答案和解析>>

科目: 來源: 題型:選擇題

9.若復數(shù)z滿足($\sqrt{3}$+i)•z=4i,其中i為虛數(shù)單位,則z=( 。
A.1-$\sqrt{3}$iB.$\sqrt{3}$-iC.$\sqrt{3}$+iD.1+$\sqrt{3}$i

查看答案和解析>>

科目: 來源: 題型:選擇題

8.設集合A={x|$\frac{x-2}{x+3}$≤0},B={x|-4≤x≤1},則A∩B=( 。
A.[-3,1]B.[-4,2]C.[-2,1]D.(-3,1]

查看答案和解析>>

科目: 來源: 題型:解答題

7.2016-2017賽季中國男子籃球職業(yè)聯(lián)賽(即CBA)正在如火如荼地進行,北京時間3月10日,CBA半決賽開打,新疆隊對陣遼寧隊,廣東隊對陣深圳隊:某學校體育組為了調查本校學生對籃球運動是否感興趣,對本校高一年級兩個班共120名同學(其中男生70人,女生50人)進行調查,得到的統(tǒng)計數(shù)據(jù)如表
  對籃球運動不感興趣 對籃球運動感興趣 總計
男生 2050 70
 女生10  4050 
 總計30 90 120
(1)完成下列2×2列聯(lián)表丙判斷能否在反錯誤的概率不超過0.05的前提下認為“對籃球運動是否感興趣與性別有關”?
(2)采用分層抽樣的方法從“對籃球運動不感興趣”的學生里抽取一個6人的樣本,其中男生和女生個多少人?從6人中隨機選取3人做進一步的調查,求選取的3人中至少有1名女生的概率
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
參考數(shù)據(jù):
P(K2≥k0 0.10 0.05 0.025 0.010 0.0050.001
k0 2.706 3.841 5.024 5.635 7.87910.828

查看答案和解析>>

科目: 來源: 題型:解答題

6.如圖,四棱錐S-ABCD中,底面ABCD為直角梯形,AB∥CD,BC⊥CD,平面SCD⊥平面ABCD,SC=SD=CD=AD=2AB=2,M,N分別為SA,SB的中點,E為CD中點,過M,N作平面MNPQ分別于BC,AD交于點P,Q,若|DQ|=λ|DA|
(1)當λ=$\frac{1}{2}$時,求證:平面SAE⊥平面MNPQ
(2)是否存在實數(shù)λ,使得三棱錐Q-BCN的體積為$\frac{7}{16}$?若存在,求出實數(shù)λ的值,若不存在,說明理由.

查看答案和解析>>

科目: 來源: 題型:填空題

5.設實數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{x+y≥0}\\{x-y≤0}\\{x+3y≤3}\end{array}\right.$,則$\frac{x+y}{\sqrt{{x}^{2}+{y}^{2}}}$的取值范圍是[0,2].

查看答案和解析>>

科目: 來源: 題型:選擇題

4.已知函數(shù)f(x)=Asin(ωx+φ)(A≠0,ω>0,0<φ<$\frac{π}{2}$),若f($\frac{2π}{3}$)=-f(0),則ω的最小值為(  )
A.$\frac{3}{2}$B.1C.2D.$\frac{1}{2}$

查看答案和解析>>

科目: 來源: 題型:選擇題

3.如圖一所示,由弧AB,弧AC,弧BC所組成的圖形叫做勒洛三角形,它由德國機械工程專家、機械運動學家勒洛首先發(fā)現(xiàn)的,它的構成如圖二所示,以正三角形ABCd的每個頂點為圓心,以邊長為半徑,在另兩個頂點間作一段弧,由三段弧所圍成的曲邊三角形即為勒洛三角形,有一個如圖一所示的靶子,某人向靶子射出一箭,若此箭一定能射中靶子且射中靶子中的任意一點是等可能的,則此箭恰好射中三角形ABC內部(即陰影部分)的概率為( 。
A.$\frac{\sqrt{3}}{2π-\sqrt{3}}$B.$\frac{\sqrt{3}}{2(π-\sqrt{3}})$C.$\frac{2π-3\sqrt{3}}{2(π-\sqrt{3})}$D.$\frac{2π-2\sqrt{3}}{2π-\sqrt{3}}$

查看答案和解析>>

同步練習冊答案