科目: 來源: 題型:
【題目】如圖,已知矩形ABCD的頂點(diǎn)A、D分別落在x軸、y軸,OD=2OA=6,AD:AB=3:1.則點(diǎn)B的坐標(biāo)是_______.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,在長方形ABCD中,AB=6厘米,BC=12厘米,點(diǎn)P沿AB邊從點(diǎn)A開始向點(diǎn)B以1厘米/秒的速度移動,點(diǎn)Q沿BC從點(diǎn)B開始向點(diǎn)C以2厘米/秒的速度移動,如果P、Q同時(shí)出發(fā),用t(秒)表示移動的時(shí)間(0≤t≤6).
(1)當(dāng)PB=2厘米時(shí),求點(diǎn)P移動多少秒?
(2)t為何值時(shí),△PBQ為等腰直角三角形?
(3)求四邊形PBQD的面積,并探究一個(gè)與計(jì)算結(jié)果有關(guān)的結(jié)論.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,正方形ABCD的對角線AC與BD相交于點(diǎn)O,∠ACB的平分線分別交AB、BD于點(diǎn)M、N,若AD=4,則線段AM的長為( �。�
A. 2B. 2C. 4﹣D. 8﹣4
查看答案和解析>>
科目: 來源: 題型:
【題目】重慶八中將于2017年整體搬遷至渝北空港新城,新校園工程建設(shè)正在如火如荼的進(jìn)行.經(jīng)工程部管理人員同意,四位同學(xué)前往工地進(jìn)行社會實(shí)踐活動.如圖,A、B、C是三個(gè)建筑原材料存放點(diǎn),點(diǎn)B、C分別位于點(diǎn)A的正北和正東方向,AC=400米.四人分別測得∠C的度數(shù)如表:
甲 | 乙 | 丙 | 丁 | |
∠C(單位:度) | 34 | 36 | 38 | 40 |
他們又調(diào)查了各點(diǎn)的建筑材料存放量,并繪制了下列尚不完整的統(tǒng)計(jì)如圖、如圖:
(1)求表中∠C度數(shù)的平均數(shù);
(2)求A處的建筑原材料存放量,并將如圖補(bǔ)充完整;
(3)用(1)中的作為∠C的度數(shù),要將A處的全部建筑原材料沿道路AB運(yùn)到B處,已知運(yùn)1方建筑原材料每米的費(fèi)用為0.1元,求運(yùn)完全部建筑原材料所需的費(fèi)用.(注:sin37°=0.6,cos37°=0.8,tan37°=0.75)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,點(diǎn) A,B,C,D 依次在同一條直線上,點(diǎn) E,F 分別在直線 AD 的兩側(cè),已知 BE//CF,∠A=∠D,AE=DF.
(1)求證:四邊形 BFCE 是平行四邊形.
(2)若 AD=10,EC=3,∠EBD=60°,當(dāng)四邊形 BFCE是菱形時(shí),求 AB 的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】“綠水青山就是金山銀山”,高新區(qū)凌水河治理工程正式啟動,若由甲工程隊(duì)單獨(dú)完成需10個(gè)月;若由甲、乙兩工程隊(duì)合做4個(gè)月后,剩下工程由乙工程隊(duì)再做5個(gè)月可以完成。(1)乙工程隊(duì)單獨(dú)完成這項(xiàng)工程需幾個(gè)月的時(shí)間?
(2)已知甲工程隊(duì)每月施工費(fèi)用為15萬元,比乙工程隊(duì)多6萬元,按要求該工程總費(fèi)用不超過141萬元,工程必須在一年內(nèi)竣工(包括12個(gè)月).為了確保經(jīng)費(fèi)和工期,采取甲、乙工程隊(duì)同時(shí)開工,甲工程隊(duì)做個(gè)月,乙工程隊(duì)做個(gè)月(均為整數(shù))分工合作的方式施工,問有哪幾種施工方案?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,∠BAC的平分線交⊙O于點(diǎn)D,交BC于點(diǎn)E(BE>EC),且BD=2.過點(diǎn)D作DF∥BC,交AB的延長線于點(diǎn)F.
(1)求證:DF為⊙O的切線;
(2)若∠BAC=60°,DE=,求圖中陰影部分的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點(diǎn)O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據(jù)平行線與等腰三角形的性質(zhì),易證得≌ 即可得,則可證得為的切線;
(2)連接CD,根據(jù)直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OE∥AB,證得根據(jù)相似三角形的對應(yīng)邊成比例,即可求得的長,然后利用三角函數(shù)的知識,求得與的長,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結(jié)束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.
(1)求b與a的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);
(2)直線與拋物線的另外一個(gè)交點(diǎn)記為N,求△DMN的面積與a的關(guān)系式;
(3)a=﹣1時(shí),直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對稱,現(xiàn)將線段GH沿y軸向上平移t個(gè)單位(t>0),若線段GH與拋物線有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,直線y=﹣x+b與反比例函數(shù)y=(k≠0)的圖象的一支交于C(1,4),E兩點(diǎn),CA⊥y軸于點(diǎn)A,EB⊥x軸于點(diǎn)B,則以下結(jié)論:①k的值為4;②△BED是等腰直角三角形;③S△ACO=S△BEO;④S△CEO=15;⑤點(diǎn)D的坐標(biāo)為(5,0).其中正確的是( �。�
A. ①②③B. ①②③④C. ②③④⑤D. ①②③⑤
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,ABCD的對角線AC,BD交于點(diǎn)O,CE平分∠BCD交AB于點(diǎn)E,交BD于點(diǎn)F,且∠ABC=60°,AB=2BC,連接OE.下列結(jié)論:①∠ACD=30°;②SABCD=ACBC;③OE:AC=:6; ④SOEF=SABCD,成立的是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com