分析 (1)根據(jù)向量減法的幾何意義表示;
(2)根據(jù)向量加法的平行四邊形法則表示;
(3)根據(jù)向量加法和數(shù)乘的幾何意義表示;
(4)根據(jù)A,B,C三點(diǎn)共線時(shí),$\overrightarrow{OB}=x\overrightarrow{OA}+y\overrightarrow{OC}$且x+y=1來(lái)表示.
解答 解:(1)$\overrightarrow{DB}=\overrightarrow{AB}-\overrightarrow{AD}=\overrightarrow{a}-\overrightarrow$;
(2)$\overrightarrow{AC}=\overrightarrow{AB}+\overrightarrow{AD}=\overrightarrow{a}+\overrightarrow$;
(3)$\overrightarrow{DE}=\overrightarrow{DC}+\overrightarrow{CE}$
=$\overrightarrow{DC}+\frac{1}{2}\overrightarrow{CB}$
=$\overrightarrow{AB}-\frac{1}{2}\overrightarrow{AD}$
=$\overrightarrow{a}-\frac{1}{2}\overrightarrow$;
(4)設(shè)$\overrightarrow{CG}=m\overrightarrow{CD}+n\overrightarrow{CE}$,則:
$\overrightarrow{CG}=2m\overrightarrow{CF}+\frac{n}{2}\overrightarrow{CB}$;
∴$\left\{\begin{array}{l}{m+n=1}\\{2m+\frac{n}{2}=1}\end{array}\right.$;
解得$m=\frac{1}{3},n=\frac{2}{3}$;
∴$\overrightarrow{CG}=\frac{1}{3}\overrightarrow{CD}+\frac{2}{3}\overrightarrow{CE}$
=$\frac{1}{3}\overrightarrow{CD}+\frac{1}{3}\overrightarrow{CB}$
=$-\frac{1}{3}\overrightarrow{AB}-\frac{1}{3}\overrightarrow{AD}$
=$-\frac{1}{3}\overrightarrow{a}-\frac{1}{3}\overrightarrow$.
點(diǎn)評(píng) 考查向量加法、減法及數(shù)乘的幾何意義,向量加法的平行四邊形法則,以及三點(diǎn)A,B,C共線的充要條件:$\overrightarrow{OB}=x\overrightarrow{OA}+y\overrightarrow{OC}$且x+y=1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{3}$ | B. | $\frac{π}{2}$ | C. | $\frac{5π}{6}$ | D. | π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $-\frac{1}{3}$ | B. | $\frac{1}{3}$ | C. | $-\frac{{2\sqrt{2}}}{3}$ | D. | $\frac{{2\sqrt{2}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 89 | B. | 44 | C. | $44\frac{1}{2}$ | D. | $44+\frac{{\sqrt{2}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com