分析 (1)利用已知條件求出池底面積,然后求解池壁面積S的表達(dá)式.
(2)設(shè)水池總造價(jià)為y,推出y=(6x+$\frac{9600}{x}$)×120+1600×150,利用基本不等式求解最值即可.
解答 解:(1)由題意得水池底面積為:$\frac{4800}{3}$=1600(平方米)
池壁面積S=2(3x+3$•\frac{1600}{x}$)=6x+$\frac{9600}{x}$(平方米)
(2)設(shè)水池總造價(jià)為y,所以
y=(6x+$\frac{9600}{x}$)×120+1600×150≥2$\sqrt{6x•\frac{9600}{x}}×120+240000=297600$.
當(dāng)且僅當(dāng)6x=$\frac{9600}{x}$,即x=40米時(shí),總造價(jià)最低為297600元.
點(diǎn)評(píng) 本題考查實(shí)際問(wèn)題的處理方法,基本不等式在最值中的應(yīng)用,考查計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4 | B. | 2$\sqrt{3}$ | C. | 3$\sqrt{2}$ | D. | 4$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com