10.函數(shù)y=x2+ln|x|的圖象大致為( 。
A.B.C.D.

分析 通過的奇偶性排除選項(xiàng),利用特殊值對應(yīng)點(diǎn)判斷選項(xiàng)即可.

解答 解:函數(shù)y=x2+ln|x|是偶函數(shù),排除選項(xiàng)B、C,
當(dāng)x=$\frac{1}{e}$時(shí),y=$\frac{1}{{e}^{2}}-1<0$,x>0時(shí),函數(shù)是增函數(shù),排除D.
故選:A.

點(diǎn)評 本題考查函數(shù)的圖象的判斷,函數(shù)的奇偶性以及函數(shù)的單調(diào)性特殊值是判斷函數(shù)的圖象的常用方法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.當(dāng)x,y滿足條件$\left\{\begin{array}{l}y≥1\\ x-y≤0\\ x+2y-6≤0\end{array}\right.$時(shí),目標(biāo)函數(shù)z=x+y的最小值是( 。
A.2B.2.5C.3.5D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)等差數(shù)列{an}滿足$\frac{si{n}^{2}{a}_{2}-co{s}^{2}{a}_{2}+co{s}^{2}{a}_{2}co{s}^{2}{a}_{7}-si{n}^{2}{a}_{2}si{n}^{2}{a}_{7}}{sin({a}_{1}+{a}_{8})}$=1,公差d∈(-1,0),若當(dāng)且僅當(dāng)n=11時(shí),數(shù)列{an}的前n項(xiàng)和Sn取得最大值,則首項(xiàng)a1的取值范圍是(  )
A.($\frac{9π}{10}$,π)B.[π,$\frac{11π}{10}$]C.[$\frac{9π}{10}$,π]D.(π,$\frac{11π}{10}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.規(guī)定A${\;}_{x}^{m}$=x•(x-1)…(x-m+1)(其中x∈R,m∈N*),且A${\;}_{x}^{0}$=1,這是排列數(shù)A${\;}_{n}^{m}$(n,m是正整數(shù),且m≤n)的一種推廣.
(1)求A${\;}_{1.5}^{4}$的值
(2)排列數(shù)的兩個(gè)性質(zhì):①A${\;}_{n}^{m}$=nA${\;}_{n-1}^{m-1}$,②A${\;}_{n}^{m}$+mA${\;}_{n}^{m-1}$=A${\;}_{n+1}^{m}$.是否能推廣到A${\;}_{x}^{m}$的情形?若能,寫出推廣的形式并給予證明;若不能,說明理由;
(3)求函數(shù)A${\;}_{x+1}^{3}$在區(qū)間[0,a](a>0,且a∈R)上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)f(x)=($\frac{1}{2}$)x-lgx零點(diǎn)的個(gè)數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.函數(shù)y=log2(x+1)的定義域是( 。
A.(0,+∞)B.(-1,+∞)C.(1,+∞)D.[-1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=x3+bx2+cx在x=1處的切線方程為6x-2y-1=0,f′(x)為f(x)的導(dǎo)函數(shù),g(x)=a•ex(a,b,c∈R,e為自然對數(shù)的底)
(1)求b,c的值;
(2)若?x∈(0,2),使g(x)=f′(x)成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某廠用甲、乙兩種原料生產(chǎn)A,B兩種產(chǎn)品,制造1t A,1t B產(chǎn)品需要的各種原料數(shù)、可得到利潤以及工廠現(xiàn)有各種原料數(shù)如下表:
原料每種產(chǎn)品所需原料(t)現(xiàn)有原
料數(shù)(t)
AB
2114
1318
利潤(萬元/t)53-
(1)在現(xiàn)有原料條件下,生產(chǎn)A,B兩種產(chǎn)品各多少時(shí),才能使利潤最大?
(2)每噸B產(chǎn)品的利潤在什么范圍變化時(shí),原最優(yōu)解不變?當(dāng)超出這個(gè)范圍時(shí),最優(yōu)解有何變化?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知向量$\overrightarrow{a}$、$\overrightarrow$滿足|$\overrightarrow{a}$|=3,|$\overrightarrow$|=2,($\overrightarrow{a}$-$\overrightarrow$)•($\overrightarrow{a}$+2$\overrightarrow$)=-2,則$\overrightarrow{a}$與$\overrightarrow$的夾角為(  )
A.$\frac{2π}{3}$B.$\frac{π}{3}$C.$\frac{5π}{6}$D.$\frac{π}{6}$

查看答案和解析>>

同步練習(xí)冊答案