9.在△ABC中,角A、B、C所對(duì)應(yīng)的邊分別為a,b,c,已知a=$\sqrt{3}$,b=$\sqrt{2}$,A=$\frac{π}{3}$,則B=$\frac{π}{4}$;S△ABC=$\frac{3+\sqrt{3}}{4}$.

分析 在△ABC中,由正弦定理得sinB=$\frac{\sqrt{2}}{2}$,可得A,
再求出sinC,即S△ABC=$\frac{1}{2}absinC$.

解答 解:在△ABC中,由正弦定理得:$\frac{a}{sinA}=\frac{sinB}$⇒sinB=$\frac{\sqrt{2}}{2}$
∵a>b,∴A>B,∴$A=\frac{π}{4}$,
sinC=sin(B+A)=sinBcosA+cosBsinA=$\frac{\sqrt{2}+\sqrt{6}}{4}$
S△ABC=$\frac{1}{2}absinC$=$\frac{1}{2}×\sqrt{3}×\sqrt{2}×\frac{\sqrt{2}+\sqrt{6}}{4}=\frac{3+\sqrt{3}}{4}$
故答案為:$\frac{π}{4}$,$\frac{3+\sqrt{3}}{4}$

點(diǎn)評(píng) 本題考查了三角恒等變形,正弦定理,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.將函數(shù)y=cosx的圖象按向量$\overrightarrow$=(2kπ+$\frac{π}{2}$,1)(k∈Z)平移,得到函數(shù)y=sinx+1的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知角α的終邊過(guò)點(diǎn)P(3,4),則$cos(\frac{5π}{2}+α)$=-$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知在直三棱柱ABC-A1B1C1中,AB=2$\sqrt{3}$,∠ACB=120°,AA1=4,則該三棱柱外接球的表面積為( 。
A.$\frac{16\sqrt{2}π}{3}$B.64$\sqrt{2}$πC.32πD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)y=sin(ωx+$\frac{π}{3}$)(ω>0)的部分圖象如圖所示,當(dāng)x=$\frac{π}{12}$時(shí),y取得最大值1,當(dāng)x=$\frac{7π}{12}$時(shí),取得最小值-1
(1)求ω的值
(2)若$\frac{\sqrt{3}}{2}$<a<1,求方程f(x)=a在區(qū)間[0,2π]上的所有實(shí)數(shù)根的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知4件產(chǎn)品中僅有1件次品,現(xiàn)逐一檢測(cè),直至確定出次品為止,記檢測(cè)的次數(shù)為ξ,則E(ξ)=$\frac{9}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知直線l:kx-y+2k-1=0與圓x2+y2=6交于A,B兩點(diǎn),若|AB|=2$\sqrt{2}$,則k=( 。
A.-$\frac{3}{4}$B.$\frac{3}{4}$C.-$\frac{4}{3}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知a,b,c∈R*,設(shè)S=$\frac{a}{b+c}$+$\frac{a+c}$+$\frac{c}{a+b}$,則S與1的大小關(guān)系是S>1(用不等號(hào)連接).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.觀察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,則a11+b11=( 。
A.76B.123C.199D.322

查看答案和解析>>

同步練習(xí)冊(cè)答案