1.判斷函數(shù)f(x)=|sinx|+cosx的奇偶性.

分析 根據(jù)函數(shù)的奇偶性的定義進(jìn)行判斷即可.

解答 解:∵f(x)=|sinx|+cosx,
∴f(-x)=|-sinx|+cos(-x)=|sinx|+cosx=f(x),
故函數(shù)f(x)是偶函數(shù).

點(diǎn)評(píng) 本題主要考查函數(shù)奇偶性的判斷,根據(jù)函數(shù)奇偶性的定義是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知四棱錐,它的底面是邊長(zhǎng)為2的正方形,其俯視圖如圖所示,側(cè)視圖為直角三角形,則該四棱錐的側(cè)面中直角三角形的個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.某大學(xué)有甲、乙兩個(gè)圖書館,對(duì)其借書、還書的等待時(shí)間進(jìn)行調(diào)查,得到下表:
甲圖書館
 借(還)書等待時(shí)間T1(分鐘) 1 2 3 4 5
 頻數(shù)1500 1000 500 500 1500 
乙圖書館
 借(還)書等待時(shí)間T2(分鐘) 1 2 3 4 5
 頻數(shù) 1000 500 2000 1250 250
以表中等待時(shí)間的學(xué)生人數(shù)的頻率為概率.
(1)分別求在甲、乙兩圖書館借書的平均等待時(shí)間;
(2)學(xué)校規(guī)定借書、還書必須在同一圖書館,某學(xué)生需要借一本數(shù)學(xué)參考書,并希望借、還書的等待時(shí)間之和不超過(guò)4分鐘,在哪個(gè)圖書館借、還書更能滿足他的要求?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知雙曲線C2與橢圓C1:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1具有相同的焦點(diǎn),則兩條曲線相交四個(gè)交點(diǎn)形成四邊形面積最大時(shí)雙曲線C2的離心率為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知函數(shù)f(x)=2x+x+1,g(x)=log2x+x+1,h(x)=log2x-1的零點(diǎn)依次為a,b,c,則( 。
A.a<b<cB.a<c<bC.b<c<aD.b<a<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.一個(gè)均勻小正方體的6個(gè)面中,三個(gè)面上標(biāo)以數(shù)字0,兩個(gè)面上標(biāo)以數(shù)字1,一個(gè)面上標(biāo)以數(shù)字2,將這個(gè)小正方體拋擲1次,則向上的數(shù)字為2的概率為$\frac{1}{6}$;將這個(gè)小正方體拋擲2次,則向上的數(shù)字之積的數(shù)學(xué)期望是$\frac{4}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.若$\overrightarrow a$、$\overrightarrow b$是兩個(gè)不共線的非零向量,
(1)若$\overrightarrow a$與$\overrightarrow b$起點(diǎn)相同,則實(shí)數(shù)t為何值時(shí),$\overrightarrow{a}$、t$\overrightarrow b$、$\frac{1}{3}$$(\overrightarrow a+\vec b)$三個(gè)向量的終點(diǎn)A,B,C在一直線上?
(2)若|$\overrightarrow a$|=|$\overrightarrow b$|,且$\overrightarrow a$與$\overrightarrow b$夾角為60°,則實(shí)數(shù)t為何值時(shí),|$\overrightarrow a-t\overrightarrow b$|的值最?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知函數(shù)y=f(x+1)的圖象關(guān)于y軸對(duì)稱,且函數(shù)f(x)在(1,+∞)上單調(diào),若數(shù)列{an}是公差不為0的等差數(shù)列,且f(a6)=f(a20),則{an}的前25項(xiàng)之和為( 。
A.0B.$\frac{25}{2}$C.25D.50

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知$f(n)=cos\frac{nπ}{4}({n∈{N^*}})$,則f(1)+f(2)+…+f(2015)的值為-1.

查看答案和解析>>

同步練習(xí)冊(cè)答案