井號(hào)I | 1 | 2 | 3 | 4 | 5 | 6 |
坐標(biāo)(x,y)(km) | (2,30) | (4,40) | (5,60) | (6,50) | (8,70) | (1,y) |
鉆探深度(km) | 2 | 4 | 5 | 6 | 8 | 10 |
出油量(L) | 40 | 70 | 110 | 90 | 160 | 205 |
分析 (Ⅰ)利用前5組數(shù)據(jù)與平均數(shù)的計(jì)算公式可得$\overline{x}$=5,$\overline{y}$=50,代入y=6.5x+a,可得a,進(jìn)而定點(diǎn)y的預(yù)報(bào)值.
(Ⅱ)根據(jù)計(jì)算公式可得$\overline{x}$,$\overline{y}$,$\widehat$=$\frac{\sum_{i=1}^{4}{x}_{2i-1}{y}_{2i-1}-4\overline{x}\overline{y}}{\sum_{i=1}^{4}{x}_{2i-1}^{2}-4{\overline{x}}^{2}}$≈10.25,$\widehat{a}$=5.25,$\widehat$=10.25,計(jì)算可得并且判斷出結(jié)論.
(Ⅲ)由題意,1、3、5、6這4口井是優(yōu)質(zhì)井,2,4這兩口井是非優(yōu)質(zhì)井,勘察優(yōu)質(zhì)井?dāng)?shù)X的可能取值為2,3,4,P(X=k)=$\frac{{∁}_{4}^{k}{∁}_{2}^{4-k}}{{∁}_{6}^{4}}$,可得X的分布列及其數(shù)學(xué)期望.
解答 解:(Ⅰ)利用前5組數(shù)據(jù)得到$\overline{x}$=$\frac{1}{5}$(2+4+5+6+8)=5,$\overline{y}$=$\frac{1}{5}$(30+40+60+50+70)=50,
∵y=6.5x+a,
∴a=50-6.5×5=17.5,
∴回歸直線方程為y=6.5x+17.5,
當(dāng)x=1時(shí),y=6.5+17.5=24,
∴y的預(yù)報(bào)值為24.
(Ⅱ)∵$\overline{x}$=4,$\overline{y}$=46.25,$\sum_{i=1}^{4}$${x}_{2i-1}^{2}$=84,$\sum_{i=1}^{4}{x}_{2i-1}{y}_{2i-1}$=945,
∴$\widehat$=$\frac{\sum_{i=1}^{4}{x}_{2i-1}{y}_{2i-1}-4\overline{x}\overline{y}}{\sum_{i=1}^{4}{x}_{2i-1}^{2}-4{\overline{x}}^{2}}$=$\frac{945-4×4×46.25}{84-4×{4}^{2}}$≈10.25,
∴$\widehat{a}$=46.25-10.25×4=5.25,
即$\widehat$=10.25,$\widehat{a}$=5.25,b=6.5,a=17.5,$\frac{10.25-6.5}{6.5}$≈57%,$\frac{17.5-5.25}{17.5}$≈70%,均超過(guò)10%,
∴均超過(guò)10%,∴不可使用位置最接近的已有舊井6(1,24).
(Ⅲ)由題意,1、3、5、6這4口井是優(yōu)質(zhì)井,2,4這兩口井是非優(yōu)質(zhì)井,
∴勘察優(yōu)質(zhì)井?dāng)?shù)X的可能取值為2,3,4,
P(X=k)=$\frac{{∁}_{4}^{k}{∁}_{2}^{4-k}}{{∁}_{6}^{4}}$,可得P(X=2)=$\frac{2}{5}$,P(X=3)=$\frac{8}{15}$,P(X=4)=$\frac{1}{15}$.
∴X的分布列為:
X | 2 | 3 | 4 |
P | $\frac{2}{5}$ | $\frac{8}{15}$ | $\frac{1}{15}$ |
點(diǎn)評(píng) 本題考查了頻率分布直方圖的性質(zhì)、超幾何分布列的概率與數(shù)學(xué)期望計(jì)算公式,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{\sqrt{2}-1}{2}$ | B. | $\frac{\sqrt{2}+1}{2}$ | C. | $\frac{\sqrt{6}-1}{2}$ | D. | $\frac{\sqrt{3}-1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充分必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{9}{5}$ | B. | 3 | C. | $\frac{24}{5}$ | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com