9.已知定義在R上的函數(shù)f(x)=2017x+ln($\sqrt{{x}^{2}+1}$+x)-2017-x+2018,若對任意的x∈R,不等式f(3x-2)+f(x)>4036恒成立,則實數(shù)x的取值范圍是($\frac{1}{2}$,+∞).

分析 令g(x)=f(x)-2018,則g(x)為奇函數(shù)且為增函數(shù),于是不等式等價于g(3x-2)>g(-x),從而3x-2>-x.

解答 解:設(shè)g(x)=f(x)-2018=2017x+ln($\sqrt{{x}^{2}+1}+x$)-2017-x
則g(-x)=2017-x+ln($\sqrt{{x}^{2}+1}$-x)-2017x=2017-x-ln($\sqrt{{x}^{2}+1}$+x)-2017x=-g(x),
∴g(x)是奇函數(shù).
∵g(x)=2017x+ln($\sqrt{{x}^{2}+1}+x$)-2017-x在(0,+∞)上是增函數(shù),
∴g(x)在R上是函數(shù).
∵f(3x-2)+f(x)>4036,即f(3x-2)-2018>2018-f(x),
∴g(3x-2)>-g(x)=g(-x),
∴3x-2>-x,解得x>$\frac{1}{2}$.
故答案為:($\frac{1}{2}$,+∞).

點評 本題考查了函數(shù)奇偶性的判斷,函數(shù)單調(diào)性的應(yīng)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,三棱柱ABC-A1B1C1中,A1B⊥平面ABC,且AB⊥AC.
(1)求證:AC⊥BB1;
(2)若AB=AC=A1B=2,M為B1C1的中點,求二面角M-AB-A1平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知$\overrightarrow a=(cosα,sinα)$,$\overrightarrow b=(cos(\frac{π}{2}-β),sin(\frac{π}{2}-β))$,若$\overrightarrow a•\overrightarrow b=3sin(α-β)$,則$\frac{tanα}{tanβ}$=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.如圖,函數(shù)y=|tanx|cosx(x∈[0,$\frac{π}{2}$)∪($\frac{π}{2}$,π])的圖象是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知角α終邊落在點(1,3)上,則$\frac{sinα-cosα}{sinα-2cosα}$的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知a=log0.50.3,b=log30.5,c=0.5-0.3,則a,b,c的大小關(guān)系是( 。
A.a>c>bB.c>a>bC.c>b>aD.b>c>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.袋中有大小完全相同的2個白球和3個黃球,逐個不放回地摸出兩球,設(shè)“第一次摸得白球”為事件A,“摸得的兩球同色”為事件B,則P(B|A)為( 。
A.$\frac{1}{10}$B.$\frac{1}{5}$C.$\frac{1}{4}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若不同兩點P,Q的坐標(biāo)分別為(a,b),(3-b,3-a),則線段PQ的垂直平分線的斜率為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.執(zhí)行如圖所示程序框圖,若輸入的a,b,n分別為1,2,5,則輸出的N=( 。
A.$\frac{1}{6}$B.$\frac{1}{2}$C.$\frac{3}{2}$D.$\frac{11}{6}$

查看答案和解析>>

同步練習(xí)冊答案