4.函數(shù)f(x)=$\frac{{x}^{3}}{\sqrt{2-x}}$+lg(x+3)的定義域為( 。
A.(-3,2]B.[-3,2]C.(-3,2)D.(-∞,-3)

分析 根據(jù)函數(shù)f(x)的解析式,列出不等式組求出解集即可.

解答 解:函數(shù)f(x)=$\frac{{x}^{3}}{\sqrt{2-x}}$+lg(x+3),
∴$\left\{\begin{array}{l}{2-x>0}\\{x+3>0}\end{array}\right.$,
解得-3<x<2;
∴f(x)的定義域為(-3,2).
故選:C.

點評 本題考查了求函數(shù)定義域問題,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

6.已知(3-2x)2017=a0+a1(x-1)+a2(x-1)2+…+a2017(x-1)2017,則a1+2a2+3a3+…+2017a2017=( 。
A.1B.-1C.4034D.-4034

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.設x,y滿足約束條件$\left\{\begin{array}{l}{x≥1}\\{y≥\frac{1}{2}x}\\{2x+y≤10}\end{array}\right.$,向量$\overrightarrow{a}$=(y-2x,m),$\overrightarrow$=(1,-1),且$\overrightarrow{a}$∥$\overrightarrow$,則m的最小值為( 。
A.-6B.6C.$\frac{3}{2}$D.-$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.集合﹛x∈Z|(x-2)(x2-3)=0﹜用列舉法表示為(  )
A.﹛2,$\sqrt{3}$,-$\sqrt{3}$﹜B.﹛2,$\sqrt{3}$,﹜C.﹛2,-$\sqrt{3}$﹜D.﹛2﹜

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.甲、乙、丙三名運動員在某次測試中各射擊20次,三人測試成績的頻率分布條形圖分別如圖所示若s,s,s分別表示他制測試成績的標準差,則它們的大小關系為(  )
A.s<s<sB.s<s<sC.s<s<sD.s<s<s

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.直線kx-y+k-1=0與圓x2+y2+2ax+2y+2a2=0恒有公共點,則實數(shù)a的取值范圍是[0,1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.在三角形ABC中,∠B=$\frac{π}{3}$,AB=1,BC=2,點D在邊AC上,且$\overrightarrow{AD}$=λ$\overrightarrow{AC}$,λ∈R.若$\overrightarrow{BD}$•$\overrightarrow{BC}$=2,則λ=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知變量x,y滿足$\left\{\begin{array}{l}x+y≥1\\ x-2y≥-2\\ 3x-2y≤3\end{array}\right.$,則x2+y2的最小值為(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{1}{2}$C.1D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.在△ABC中,$\overrightarrow{AB}•\overrightarrow{AC}<0$,則△ABC是( 。
A.鈍角三角形B.直角三角形C.銳角三角形D.等邊三角形

查看答案和解析>>

同步練習冊答案