分析 由三角形內角和定理求出B=60°,即角B不是最大和最小邊;設最大邊為a,最小邊為c,得a=2c,利用正弦定理,求出A、C的值,即得三內角之比.
解答 解:△ABC的三個內角A,B,C滿足2B=A+C,
且A+B+C=180°,
∴B=60°,A+C=120°;
不妨設a為最大邊,則c為最小邊,即a=2c,
由正弦定理得:$\frac{a}{sinA}$=$\frac{sinB}$,
即$\frac{2c}{sin(120°-C)}$=$\frac{c}{sinC}$,
∴sin120°cosC-cos120°sinC=2sinC,
化簡得sinC=$\frac{\sqrt{3}}{3}$cosC,
即tanC=$\frac{\sqrt{3}}{3}$;
∴C=30°,A=90°,
∴A:B:C=90°:60°:30°=3:2:1;
即三內角之比為3:2:1.
點評 本題考查了正弦定理的應用問題,解題的關鍵是找出三角形的最大邊和最小邊,是基礎題.
科目:高中數學 來源: 題型:選擇題
A. | $\frac{{\sqrt{2}-1}}{2}$ | B. | $\sqrt{2}-1$ | C. | 1 | D. | $\frac{{\sqrt{2}+1}}{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (-∞,1]∪[3,+∞) | B. | (-∞,-1) | C. | (3,+∞) | D. | (-∞,-1] |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (-1,2] | B. | (1,2] | C. | [-2,1) | D. | [-3,1) |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{{\sqrt{2}}}{2}$ | B. | 1 | C. | $\sqrt{2}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com