科目: 來(lái)源: 題型:
【題目】在矩形ABCD中,AD>AB,點(diǎn)P是CD邊上的任意一點(diǎn)(不含C,D兩端點(diǎn)),過(guò)點(diǎn)P作PF∥BC,交對(duì)角線BD于點(diǎn)F.
(1)如圖1,將△PDF沿對(duì)角線BD翻折得到△QDF,QF交AD于點(diǎn)E.求證:△DEF是等腰三角形;
(2)如圖2,將△PDF繞點(diǎn)D逆時(shí)針?lè)较蛐D(zhuǎn)得到△P'DF',連接P'C,F(xiàn)'B.設(shè)旋轉(zhuǎn)角為α(0°<α<180°).
①若0°<α<∠BDC,即DF'在∠BDC的內(nèi)部時(shí),求證:△DP'C∽△DF'B.
②如圖3,若點(diǎn)P是CD的中點(diǎn),△DF'B能否為直角三角形?如果能,試求出此時(shí)tan∠DBF'的值,如果不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】松雷中學(xué)剛完成一批校舍的修建,有一些相同的辦公室需要粉刷墻面.一天3名一級(jí)技工去粉刷7個(gè)辦公室,結(jié)果其中有90m2墻面未來(lái)得及粉刷;同樣時(shí)間內(nèi)4名二級(jí)技工粉刷了7個(gè)辦公室之外,還多粉刷了另外的70m2墻面.每名一級(jí)技工比二級(jí)技工一天多粉刷40m2墻面.
(1)求每個(gè)辦公室需要粉刷的墻面面積.
(2)已知每名一級(jí)技工每天需要支付費(fèi)用100元,每名二級(jí)技工每天需要支付費(fèi)用90元.松雷中學(xué)有40個(gè)辦公室的墻面和720m2的展覽墻需要粉刷,現(xiàn)有3名一級(jí)技工的甲工程隊(duì),4名二級(jí)技工的乙工程隊(duì),要來(lái)粉刷墻面.松雷中學(xué)有兩個(gè)選擇方案,方案一:全部由甲工程隊(duì)粉刷;方案二:全部由乙工程隊(duì)粉刷;若使得總費(fèi)用最少,松雷中學(xué)應(yīng)如何選擇方案,請(qǐng)通過(guò)計(jì)算說(shuō)明.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖1,已知拋物線y=﹣x2+bx+c與x軸交于A(﹣1,0),B(3,0)兩點(diǎn),與y軸交于C點(diǎn),點(diǎn)P是拋物線上在第一象限內(nèi)的一個(gè)動(dòng)點(diǎn),且點(diǎn)P的橫坐標(biāo)為t.
(1)求拋物線的表達(dá)式;
(2)設(shè)拋物線的對(duì)稱軸為l,l與x軸的交點(diǎn)為D.在直線l上是否存在點(diǎn)M,使得四邊形CDPM是平行四邊形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(3)如圖2,連接BC,PB,PC,設(shè)△PBC的面積為S.
①求S關(guān)于t的函數(shù)表達(dá)式;
②求P點(diǎn)到直線BC的距離的最大值,并求出此時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】參照學(xué)習(xí)函數(shù)的過(guò)程與方法,探究函數(shù)y=的圖象與性質(zhì).
因?yàn)?/span>y=,即y=﹣
+1,所以我們對(duì)比函數(shù)y=﹣
來(lái)探究.
列表:
x | … | ﹣4 | ﹣3 | ﹣2 | ﹣1 | ﹣ | 1 | 2 | 3 | 4 | … | |
y=﹣ | … | 1 | 2 | 4 | ﹣4 | ﹣1 | 1 | ﹣ | ﹣ | … | ||
y= | … | 2 | 3 | 5 | ﹣3 | ﹣1 | 0 | … |
描點(diǎn):在平面直角坐標(biāo)系中,以自變量x的取值為橫坐標(biāo),以y=相應(yīng)的函數(shù)值為縱坐標(biāo),描出相應(yīng)的點(diǎn),如圖所示:
(1)請(qǐng)把y軸左邊各點(diǎn)和右邊各點(diǎn),分別用一條光滑曲線順次連接起來(lái);
(2)觀察圖象并分析表格,回答下列問(wèn)題:
①當(dāng)x<0時(shí),y隨x的增大而 ;(填“增大”或“減小”)
②y=的圖象是由y=﹣
的圖象向 平移 個(gè)單位而得到;
③圖象關(guān)于點(diǎn) 中心對(duì)稱.(填點(diǎn)的坐標(biāo))
(3)設(shè)A(x1,y1),B(x2,y2)是函數(shù)y=的圖象上的兩點(diǎn),且x1+x2=0,試求y1+y2+3的值.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,直線AB、CD相交于點(diǎn)O,過(guò)點(diǎn)O作兩條射線OM、ON,且∠AOM=∠CON=90°
(1)若OC平分∠AOM,求∠AOD的度數(shù).
(2)若∠1=∠BOC,求∠AOC和∠MOD.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知:△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,連接AE,BD交于點(diǎn)O,AE與DC交于點(diǎn)M,BD與AC交于點(diǎn)N.
(1)如圖1,猜想AE與BD的數(shù)量關(guān)系與位置關(guān)系,并加以證明.
(2)如圖2,若AC=DC,在不添加任何輔助線的情況下,請(qǐng)直接寫(xiě)出圖2中四對(duì)全等的直角三角形.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】某市為創(chuàng)建全國(guó)文明城市,開(kāi)展“美化綠化城市”活動(dòng),計(jì)劃經(jīng)過(guò)若干年使城區(qū)綠化總面積新增360萬(wàn)平方米.自2013年初開(kāi)始實(shí)施后,實(shí)際每年綠化面積是原計(jì)劃的1.5倍,這樣可提前4年完成任務(wù).
(1)問(wèn)實(shí)際每年綠化面積多少萬(wàn)平方米?
(2)為加大創(chuàng)城力度,市政府決定從2017年起加快綠化速度,要求不超過(guò)2年完成,那么實(shí)際平均每年綠化面積至少還要增加多少萬(wàn)平方米?
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】甲、乙兩車站相距,一列慢車從甲站開(kāi)出,每小時(shí)行駛
,一列快車從乙站開(kāi)出,每小時(shí)行駛
.(必須用方程解,方程以外的方法不計(jì)分)
(1)兩車同時(shí)開(kāi)出,相向而行,多少小時(shí)相遇?
(2)兩車同時(shí)開(kāi)出,同向而行,慢車在前,多少小時(shí)快車追上慢車?
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知BC是⊙O的直徑,點(diǎn)D是BC延長(zhǎng)線上一點(diǎn),AB=AD,AE是⊙O的弦,∠AEC=30°.
(1)求證:直線AD是⊙O的切線;
(2)若AE⊥BC,垂足為M,⊙O的半徑為4,求AE的長(zhǎng).
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】探究下面的問(wèn)題:
(1)如圖甲,在邊長(zhǎng)為a的正方形中去掉一個(gè)邊長(zhǎng)為b的小正方形(a>b),把余下的部分剪拼成如圖乙的一個(gè)長(zhǎng)方形,通過(guò)計(jì)算兩個(gè)圖形(陰影部分)的面積,驗(yàn)證了一個(gè)等式,這個(gè)等式是________(用式子表示),即乘法公式中的___________公式.
(2)運(yùn)用你所得到的公式計(jì)算:
①10.7×9.3
②
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com